Crystal Violet Dye Removal from Aqueous Solutions Using Elodea Canadensis as Biofilter

2017 ◽  
Vol 68 (10) ◽  
pp. 2270-275
Author(s):  
Anamaria Torok ◽  
Boldizsar Nagy ◽  
Szende Tonk ◽  
Erzsebet Buta ◽  
Robert Szep ◽  
...  

The phytoremediation of Crystal violet dye was developed using the aquatic plant Elodea canadensis as biofilter. We analyzed the role of functional groups in phytoremediation by aquatic plants using the Fourier transform infrared spectroscopy (FTIR). The aquatic plant�s abiotic stress responses were evaluated under exposure of 20 - 90 mg/L initial dye concentration, where a significant decrease of the photosynthetic pigments content suggests the plant�s biosynthesis deregulation at higher concentrations. We determined the effect of operational parameters such as contact time, plant quantity initial concentration, initial pH and temperature on the removal efficiency. Data were analysed using the kinetic (pseudo-first- and second-order) and isotherm (Langmuir, Freundlich and Dubinin-Radushkevich) models. Our results show that the phytoremediation process follows the pseudo-second-order kinetic model, meaning that it takes places as chemisorption. The Crystal violet uptake was successfully described using the Freundlich isotherm model as a multilayer adsorption with heterogeneous energetic distribution of active sites.

2013 ◽  
Vol 67 (4) ◽  
pp. 737-744 ◽  
Author(s):  
J. X. Zhang ◽  
L. L. Ou

The adsorption of crystal violet dye from aqueous solutions onto an activated carbon prepared from peanut shells was analyzed in this study. The effects of particle size, initial concentration, time and temperature on crystal violet removal were studied in batch experiments. Experimental results showed that the adsorption equilibrium was achieved within 100 min for all studied concentrations. Analysis of adsorption results showed that the adsorption isotherms could be well fitted to the Langmuir model. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients for pseudo first-order and second-order kinetic models were calculated and discussed. The results revealed that the adsorption kinetics was in good agreement with the pseudo second-order equation. Thermodynamic parameters such as the change of Gibbs free energy (ΔG°), change of enthalpy (ΔH°) and change of entropy (ΔS°) have also been determined and it has been found that the adsorption process should be spontaneous, endothermic and physisorption in nature.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Hülya Karaca ◽  
Turgay Tay ◽  
Merih Kıvanç

The biosorption of lead ions (Pb2+) onto lyophilized fungus Aspergillus niveus was investigated in aqueous solutions in a batch system with respect to pH, contact time and initial concentration of the ions at 30 °C. The maximum adsorption capacity of lyophilized A. niveus was found to be 92.6 mg g−1 at pH 5.1 and the biosorption equilibrium was established about in 30 min. The adsorption capacity obtained is one of the highest value among those reported in the literature. The kinetic data were analyzed using the pseudo-first-order kinetic, pseudo-second-order kinetic, and intraparticle diffusion equations. Kinetic parameters, such as rate constants, equilibrium adsorption capacities, and related correlation coefficients for the kinetic models were calculated and discussed. It was found that the adsorption of lead ions onto lyophilized A. niveus biomass fit the pseudo-second-order kinetic model well. The Langmuir and Freundlich isotherm parameters for the lead ion adsorption were applied and the Langmuir model agreed better with the adsorption of lead ions onto lyophilized A. niveus.


Author(s):  
Tasrina R. Choudhury ◽  
Snahasish Bhowmik ◽  
M. S. Rahman ◽  
Mithun R. Nath ◽  
F. N. Jahan ◽  
...  

Sawdust supported nano-zerovalent (NZVI/SD) iron was synthesized by treating sawdust with ferrous sulphate followed by reduction with NaBH4. The NZVI/SD was characterized by SEM, XRD, FTIR and Chemical method. Adsorption of As (III) by NZVI/SD was investigated and the maximum uptake of As (III) was found at pH value of 7.74 and equilibrium time of 3 hrs. The adsorption isotherm modelling revealed that the equilibrium adsorption data were better fitted with the Langmuir isotherm model compared with the Freundlich Isotherm model. This study revealed that the maximum As (III) ions adsorption capacity was found to be 12.66 mg/g for using NZVI/SD adsorbent. However, the kinetics data were tested by pseudo-first-order and pseudo-second-order kinetic models; and it was observed that the adsorption data could be well fitted with pseudo-second-order kinetics for As (III) adsorption onto NZVI/SD depending on both adsorbate concentration and adsorption sites. The result of this study suggested that NZVI/SD could be developed as a prominent environment-friendly adsorbent for the removal of As (III) ions from aqueous systems.


Author(s):  
Jurgita Seniūnaitė ◽  
Rasa Vaiškūnaitė ◽  
Kristina Bazienė

Research studies on the adsorption kinetics are conducted in order to determine the absorption time of heavy metals on coffee grounds from liquid. The models of adsorption kinetics and adsorption diffusion are based on mathe-matical models (Cho et al. 2005). The adsorption kinetics can provide information on the mechanisms occurring be-tween adsorbates and adsorbents and give an understanding of the adsorption process. In the mathematical modelling of processes, Lagergren’s pseudo-first- and pseudo-second-order kinetics and the intra-particle diffusion models are usually applied. The mathematical modelling has shown that the kinetics of the adsorption process of heavy metals (copper (Cu) and lead (Pb)) is more appropriately described by the Lagergren’s pseudo-second-order kinetic model. The kinetic constants (k2Cu = 0.117; k2Pb = 0,037 min−1) and the sorption process speed (k2qeCu = 0.0058–0.4975; k2qePb = 0.021–0.1661 mg/g per min) were calculated. After completing the mathematical modelling it was calculated that the Langmuir isotherm better reflects the sorption processes of copper (Cu) (R2 = 0.950), whilst the Freundlich isotherm – the sorption processes of lead (Pb) (R2 = 0.925). The difference between the mathematically modelled and experimen-tally obtained sorption capacities for removal of heavy metals on coffee grounds from aqueous solutions is 0.059–0.164 mg/l for copper and 0.004–0.285 mg/l for lead. Residual concentrations of metals in a solution showed difference of 1.01 and 0.96 mg/l, respectively.


2017 ◽  
Vol 12 (2) ◽  
pp. 305-313 ◽  
Author(s):  
N. Rajamohan ◽  
M. Rajasimman

This experimental research was an investigation into removal of mercury by using a strong acid cation resin, 001 × 7. Parametric experiments were conducted to determine the optimum pH, resin dosage, agitation speed and the effect of change in concentration in the range of 50–200 mg/L. High resin dosages favoured better removal efficiency but resulted in lower uptakes. Equilibrium experiments were performed and fitted to Langmuir and Freundlich isotherm models. Langmuir model suited well to this study confirming the homogeneity of the resin surface. The Langmuir constants were estimated as qmax = 110.619 mg/g and KL = 0.070 L/g at 308 K. Kinetic experiments were modeled using Pseudo second order model and higher values of R2 (>0.97) were obtained. The Pseudo second order kinetic constants, namely, equilibrium uptake (qe) and rate constant (k2), were evaluated as 59.17 mg/g and 40.2 × 10−4 g mg−1 min−1 at an initial mercury concentration of 100 mg/L and temperature of 308 K.


2015 ◽  
Vol 6 (2) ◽  
pp. 333-344 ◽  
Author(s):  
Neda Khorshidi ◽  
Ali Niazi

We have investigated the biosorption of pyrocatechol violet (PCV) from aqueous solutions by Robinia pseudoacacia tree leaves as a low-cost and eco-friendly biosorbent. A full factorial design was performed for screening the main variables and their interactions, which reduces the large total number of experiments. Results of the full factorial design (24) based on an analysis of variance (ANOVA) demonstrated that the initial PCV concentration, contact time, pH and temperature are statistically significant. Box-Behnken design, a response surface methodology, was used for further optimization of these selected factors. The ANOVA and some statistical tests such as lack-of-fit and coefficient of determination (R2) showed good fit of the experimental data to the second-order polynomial model. The Langmuir and Freundlich isotherm models were used to describe the equilibrium isotherms. Equilibrium data fitted well with the Freundlich isotherm model (R2 > 0.97). In addition, thermodynamic parameters (ΔG°, ΔH° and ΔS°) were calculated, these parameters show that the biosorption process was spontaneous (ΔG° = −2.423) and exothermic (ΔH° = −9.67). The biosorption kinetic data were fitted with the pseudo-second-order kinetic model (R2 > 0.999). These results confirm that R. pseudoacacia leaves have good potential for removal of PCV from aqueous solution.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Siti Kartina Abdul Karim ◽  
Soh Fong Lim ◽  
S. N. David Chua ◽  
Shanti Faridah Salleh ◽  
Puong Ling Law

In this study, banana fibers extracted from banana leaves, stem, and stalk were used to remove acid green dye from aqueous solution. Three initial concentrations (750, 1000, and 1500 ppm) were chosen to determine the kinetic characteristics of the banana fiber sorbents at 25°C, agitation speed of 200 rpm, and total contact time of 3 hours. The pseudo-first-order, pseudo-second-order, and Dunwald-Wagner kinetic models were applied to the experimental kinetic data. For isotherm study, the batch experiments were performed at 25°C, initial pH 2, agitation speed of 200 rpm, and initial concentrations between 100 and 2000 ppm. The experimental data was fitted to the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherms. The equilibrium was achieved in less than 90 minutes. The removal of the acid green dye was found to be following closely the pseudo-second-order kinetic model. For equilibrium study, the Freundlich isotherm was found to fit well with adsorption of acid green dye on the banana leaves, stem, and stalk sorbents. The calculated mean free energy of 4–11 J/mol indicated that the sorption process was mostly physical in nature. Experimental results also showed the adsorption performance is greatly affected by the initial solution pH.


2011 ◽  
Vol 183-185 ◽  
pp. 362-366 ◽  
Author(s):  
Jun Li ◽  
Ming Zhen Hu

Adsorption removal of a cationic dye, rhodamine B (RhB) from water onto rectorite and sepiolite was investigated. The rectorite and sepiolite were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Attempts were made to fit the isothermal data using Langmuir and Freundlich equations. The experimental results have demonstrated that the equilibrium data are fitted well by a Freundlich isotherm equation. Pseudo-first-order and pseudo-second-order models were considered to evaluate the rate parameters. The experimental data were well described by the pseudo-second-order kinetic model. The results indicate that the rectorite exhibited higher adsorption capacity for the removal of RhB than sepiolite and could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.


2021 ◽  
Vol 16 (2) ◽  
pp. 436-443
Author(s):  
Sharmila Ramasamy ◽  
Anbarasu Kaliyaperumal ◽  
Thamilarasu Pommanaickar

Textile industries discharge wastewater containing various dyes including Crystal Violet dye. These dyes are very harmful for human beings, animals and plants. Therefore, the attempt is made for adsorption framework on elimination of crystal violet dye by using Cicca acida L. stem-activated carbon from aqueous solution carried out under various experimental methods and optimization conditions. Adsorption data modeled with Freundlich, Langmuir and Tempkin adsorption isotherms. Thermodynamic factors like as ∆Ho, ∆So and ∆Go were calculated, which indicated that the adsorption was spontaneous and endothermic nature. Based on kinetic study, pseudo-second order kinetic model was fit compared to the pseudo-first order kinetic model. The adsorbent has been characterized by SEM before and after adsorption of crystal violet dye solution.


Author(s):  
M. Ait Haki ◽  
A. Imgharn ◽  
N. Aarab ◽  
A. Hsini ◽  
A. Essekri ◽  
...  

Abstract The main objective of this study is to optimize a new composite for the depollution of contaminated water. The sodium hydroxide-modified Avocado shells (NaOH-AS) were firstly prepared, characterized by field-emission-scanning-electron-microscopy (FE-SEM), X-ray energy dispersive spectroscopy (EDS) and Fourier transforms infrared (FT-IR) spectroscopy, and applied for efficient removal of Crystal violet dye (CV) in wastewater. In addition, the adsorption in a batch system of CV dye on the NaOH-AS material was studied. Therefore, we accomplished a parametric study of the adsorption by studying the effect of several important parameters on the decolorizing power of the used material, namely, initial pH, contact time, initial CV dye concentration, temperature, and the ionic strength effect on the CV dye adsorption process were systematically assessed. The highest adsorption efficiency of CV dye (>96.9%) by NaOH-AS was obtained at pH >8. The pseudo-second-order kinetic model gave the best description of the adsorption kinetic of CV dye on the AS and NaOH-AS adsorbents. Besides, the mass transfer of CV dye molecules from the solution to the adsorbent surface occurred in three sequential stages (boundary layer diffusion, intraparticle diffusion and adsorption equilibrium). The adsorption isotherm data were best fitted with the Freundlich model. The adsorption capacity of AS increased from 135.88 to 179.80 mg g−1 after treatment by 1 M NaOH. The thermodynamic study showed that CV dye adsorption onto NaOH-AS was an exothermic and feasible process. The electrostatic interactions acted as the only forces governing the CV adsorption mechanism. The NaOH-AS demonstrated a satisfactory reusability. Therefore, we can state that the as-developed NaOH-AS material has a potential application prospect as an efficient adsorbent for CV dye from wastewaters.


Sign in / Sign up

Export Citation Format

Share Document