scholarly journals DSC and FT-IR Analysis for the Formulation of Dermal Films with Meloxicam in Bioadhesive Polymeric Matrices

2019 ◽  
Vol 69 (12) ◽  
pp. 3692-3697 ◽  
Author(s):  
Nicoleta Todoran ◽  
Paula Antonoaea ◽  
Aura Rusu ◽  
Adriana Ciurba ◽  
Magdalena Birsan ◽  
...  

The film forming polymers have a primary role in controlling the diffusion of the drug molecules and the bioavailability, its compatibility with the drug being an essential factor of the formulation. This study aimed the thermal analysis by Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR) evaluation of meloxicam associated with HPMC E5, HPMC 15000 and ethylcellulose, in order to identify the compatibility of associations. The results showed that meloxicam has minor interactions in binary or ternary physical mixtures with the three studied polymers, proving that the mixtures are suitable for obtaining bioadhesive matrices by casting and solvent evaporation method.

2014 ◽  
Vol 64 (1) ◽  
pp. 89-104 ◽  
Author(s):  
Rehab Mohammad Yusif ◽  
Irhan Ibrahim Abu Hashim ◽  
Marwa Salah El-Dahan

Abstract Eudragit E (EE)-sodium alginate (SA) polyelectrolyte complexes (PECs) were prepared at pH 4 and 5.8 using sodium alginate of high (SAH) and low viscosity (SAL). The optimum EE-SA complexation mass ratio was determined using viscosity measurements. Interactions between EE and SA in PECs were characterized by Fourier transform infra-red spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Diltiazem hydrochloride (DTZ HCl) tablets were prepared using the prepared EE-SA PECs and their physical mixtures at different ratios as matrices. Tablets were evaluated for swelling characteristics and in vitro drug release. Tablets containing EE-SAH physical mixtures of ratios (1.5:1 and 1:3) as matrices were effective in achieving sustained release of DTZ HCl, where the percent drug released was significantly (p < 0.05) decreased compared to that from tablets either containing the same ratios of EE-SAL physical mixtures or the preformed EE- -SAH and EE-SAL PECs.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 823 ◽  
Author(s):  
Jason Thomas Duskey ◽  
Cecilia Baraldi ◽  
Maria Cristina Gamberini ◽  
Ilaria Ottonelli ◽  
Federica Da Ros ◽  
...  

Discovering new materials to aid in the therapeutic delivery of drugs is in high demand. PLGA, a FDA approved polymer, is well known in the literature to form films or nanoparticles that can load, protect, and deliver drug molecules; however, its incompatibility with certain drugs (due to hydrophilicity or charge repulsion interactions) limits its use. Combining PLGA or other polymers such as polycaprolactone with other safe and positively-charged molecules, such as chitosan, has been sought after to make hybrid systems that are more flexible in terms of loading ability, but often the reactions for polymer coupling use harsh conditions, films, unpurified products, or create a single unoptimized product. In this work, we aimed to investigate possible innovative improvements regarding two synthetic procedures. Two methods were attempted and analytically compared using nuclear magnetic resonance (NMR), fourier-transform infrared spectroscopy (FT-IR), and dynamic scanning calorimetry (DSC) to furnish pure, homogenous, and tunable PLGA-chitosan hybrid polymers. These were fully characterized by analytical methods. A series of hybrids was produced that could be used to increase the suitability of PLGA with previously non-compatible drug molecules.


2003 ◽  
Vol 58 (12) ◽  
pp. 1171-1175 ◽  
Author(s):  
Yu-Feng Li ◽  
Tong-Lai Zhang ◽  
Jian-Guo Zhang ◽  
Kai-Bei Yu

Single crystals of potassium hydrogenphthalate monohydrate, KHPhth(H2O), were grown from aqueous solution using a slow cooling method and the structure was determined by X-ray diffraction analysis. The crystals belong to the monoclinic space group P21/c. Its unit cell parameters are as follows: a = 1.1235(1), b = 0.6689(1), c = 1.1998(2) nm, β = 98.85°, V = 0.8909(1) nm3, Dc = 1.657 g/cm3, Z = 4, F(000) = 456. The thermal decomposition of the complex was studied using differential scanning calorimetry (DSC), thermogravimetry-derivative thermogravimetry (TGGTG) and FT-IR techniques. With a linear heat rate, the diagrams show three endothermic processes. RCOOK and K2CO3 are produced at 330 and 467°C, respectively, according to FT-IR analysis.


Author(s):  
ARIF BUDIMAN ◽  
SANDRA MEGANTARA ◽  
AYU APRILIANI

Objective: The solubility of a drug in water plays an important role in the absorption of the drug after oral administration. Cocrystal is one method that improves the solubility of the active pharmaceutical ingredient (API). The aim of this study was to investigate the formation of a glibenclamide (GCM)-aspartame (APM) cocrystal using the solvent evaporation method and to evaluate its solubility and dissolution rate. Methods: Molecular docking of the GCM-APM cocrystal was observed using an in silico method. The GCM-APM cocrystal (1:2) was prepared by using the solvent evaporation method. The cocrystal of GCM-APM was evaluated by the saturated solubility test and the dissolution rate test (USP type 2 apparatus). The solvent evaporation product of GCM-APM was characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). Results: In silico study showed that the interaction of GCM-APM has hydrogen bonding and the potential to improve the solubility of GCM. Evaluation of the cocrystal of GCM-APM showed that the solubility and dissolution rate of the cocrystal are significantly increased. Characterization of FT-IR showed that no chemical reaction occurred in the GCM-APM cocrystal. The DSC analysis showed the changes in the melting point of GCM. Measurement of PXRD showed the formation of a new solid crystal phase that is different from GCM and APM. Conclusion: GCM-APM has hydrogen bonding can improve the solubility and dissolution rate of GCM.


2017 ◽  
Vol 54 (4) ◽  
pp. 673-677 ◽  
Author(s):  
Elisabeta Elena Popa ◽  
Maria Rapa ◽  
Ovidiu Popa ◽  
Gabriel Mustatea ◽  
Vlad Ioan Popa ◽  
...  

PLA-based composites containing CF in the range 0 to 10 wt. % were prepared by melt mixing technique. The prepared composites were investigated in terms of processability, chemical structure (by Attenuated total reflectance - Fourier Transform Infrared - ATR-FT-IR analysis), thermal (Differential Scanning Calorimetry - DSC), optical properties (using UV-Vis spectrometry), barrier and migration in distilled water. Also, the behaviour of PLA based composites at sterilization was performed by examination the changes in their chemical structure. This study shows the feasibility of improving of PLA properties by using cellulose fibres, designed for flexible food packaging.


Author(s):  
Liling Cho ◽  
David L. Wetzel

Polarized infrared microscopy has been used for forensic purposes to differentiate among polymer fibers. Dichroism can be used to compare and discriminate between different polyester fibers, including those composed of polyethylene terephthalate that are frequently encountered during criminal casework. In the fiber manufacturering process, fibers are drawn to develop molecular orientation and crystallinity. Macromolecular chains are oriented with respect to the long axis of the fiber. It is desirable to determine the relationship between the molecular orientation and stretching properties. This is particularly useful on a single fiber basis. Polarized spectroscopic differences observed from a single fiber are proposed to reveal the extent of molecular orientation within that single fiber. In the work presented, we compared the dichroic ratio between unstretched and stretched polyester fibers, and the transition point between the two forms of the same fiber. These techniques were applied to different polyester fibers. A fiber stretching device was fabricated for use on the instrument (IRμs, Spectra-Tech) stage. Tension was applied with a micrometer screw until a “neck” was produced in the stretched fiber. Spectra were obtained from an area of 24×48 μm. A wire-grid polarizer was used between the source and the sample.


Author(s):  
Kusuma P. ◽  
Syukri Y ◽  
Sholehuddin F. ◽  
Fazzri N. ◽  
Romdhonah . ◽  
...  

The most efficient tablet processing method is direct compression. For this method, the filler-binder can be made by coprocessing via spray drying method. The purpose of this study was to investigate the effect of spray dried co-processing on microcrystalline cellulose (MCC) PH 101, lactose and Kollidon® K 30 as well as to define the optimum proportions. Spray dried MCC PH 101, lactose, and Kollidon® K 30 were varied in 13 different mixture design proportions to obtain compact, free-flowing filler-binder co-processed excipients (CPE). Compactibility and flow properties became the key parameters to determine the optimum proportions of CPE that would be compared to their physical mixtures. The result showed that the optimum proportion of CPE had better compactibility and flow properties than the physical mixtures. The optimum CPE, consisting of only MCC PH 101 and Kollidon® K 30 without lactose, that were characterized using infrared spectrophotometer, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM) indicated no chemical change therein. Therefore, this study showed that spray dried MCC PH 101, lactose and Kollidon® K 30 could be one of the filler-binder alternatives for direct compression process.


2019 ◽  
Vol 9 (01) ◽  
pp. 21-26
Author(s):  
Arif Budiman ◽  
Ayu Apriliani ◽  
Tazyinul Qoriah ◽  
Sandra Megantara

Purpose: To develop glibenclamide-nicotinamide cocrystals with the solvent evaporation method and evaluate their solubility and dissolution properties. Methods: Cocrystals of glibenclamide-nicotinamide (1:2) were prepared with the solvent evaporation method. The prediction of interactive cocrystals was observed using in silico method. The solubility and dissolution were performed as evaluation of cocrystals. The cocrystals also were characterized by differential scanning calorimetry (DSC), infrared spectrophotometry, and powder X-ray diffraction (PXRD). Result: The solubility and dissolution profile of glibenclamide-nicotinamide cocrystal (1:2) increased significantly compared to pure glibenclamide as well as its physical mixture. Characterization of cocrystal glibenclamide-nicotinamide (1:2) including infrared Fourier transform, DSC, and PXRD, indicated the formation of a new solid crystal phase differing from glibenclamide and nicotinamide. Conclusion: The confirmation of cocrystal glibenclamide-nicotinamide (1:2) indicated the formation of new solid crystalline phases that differ from pure glibenclamide and its physical mixture


2020 ◽  
Vol 71 (8) ◽  
pp. 21-26
Author(s):  
Elena-Emilia Oprescu ◽  
Cristina-Emanuela Enascuta ◽  
Elena Radu ◽  
Vasile Lavric

In this study, the SO42-/TiO2-La2O3-Fe2O3 catalyst was prepared and tested in the conversion of fructose to ethyl levulinate . The catalyst was characterized from the point of view of the textural analysis, FT-IR analysis, acid strength distribution, X-ray powder diffraction and pyridine adsorption IR spectra. The influence of the reaction parameters on the ethyl levulinate yield was study. The maximum yield of 37.95% in levulinate esters was obtained at 180 �C, 2 g catalyst and 4 h reaction time. The effect of ethyl levulinate addition to diesel-biodiesel blend in different rates, i.e, 0.5, 1, 2.5, 5 (w.t %) on density, kinematic viscosity and flash point was evaluated and compared with the European specification.


2017 ◽  
Vol 68 (8) ◽  
pp. 1895-1902
Author(s):  
Ioana Cristina Tita ◽  
Eleonora Marian ◽  
Bogdan Tita ◽  
Claudia Crina Toma ◽  
Laura Vicas

Thermal analysis is one of the most frequently used instrumental techniques in the pharmaceutical research, for the thermal characterization of different materials from solids to semi-solids, which are of pharmaceutical relevance. In this paper, simultaneous thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) were used for characterization of the thermal behaviour of candesartan cilexetil � active substance (C-AS) under dynamic nitrogen atmosphere and nonisothermal conditions, in comparison with pharmaceutical product containing the corresponding active substance. It was observed that the commercial samples showed a different thermal profile than the standard sample, caused by the presence of excipients in the pharmaceutical product and to possible interaction of these with the active substance. The Fourier transformed infrared spectroscopy (FT-IR) and X-ray powder diffraction (XRPD) were used as complementary techniques adequately implement and assist in interpretation of the thermal results. The main conclusion of this comparative study was that the TG/DTG and DSC curves, together with the FT-IR spectra, respectively X-ray difractograms constitute believe data for the discrimination between the pure substance and pharmaceutical forms.


Sign in / Sign up

Export Citation Format

Share Document