scholarly journals Oxidative chemical vapor deposition of polyaniline thin films

2017 ◽  
Vol 8 ◽  
pp. 1266-1276 ◽  
Author(s):  
Yuriy Y Smolin ◽  
Masoud Soroush ◽  
Kenneth K S Lau

Polyaniline (PANI) is synthesized via oxidative chemical vapor deposition (oCVD) using aniline as monomer and antimony pentachloride as oxidant. Microscopy and spectroscopy indicate that oCVD processing conditions influence the PANI film chemistry, oxidation, and doping level. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) indicate that a substrate temperature of 90 °C is needed to minimize the formation of oligomers during polymerization. Lower substrate temperatures, such as 25 °C, lead to a film that mostly includes oligomers. Increasing the oxidant flowrate to nearly match the monomer flowrate favors the deposition of PANI in the emeraldine state, and varying the oxidant flowrate can directly influence the oxidation state of PANI. Changing the reactor pressure from 700 to 35 mTorr does not have a significant effect on the deposited film chemistry, indicating that the oCVD PANI process is not concentration dependent. This work shows that oCVD can be used for depositing PANI and for effectively controlling the chemical state of PANI.

1990 ◽  
Vol 209 ◽  
Author(s):  
Yoshihisa Fujisaki ◽  
Sumiko Sakai ◽  
Saburo Ataka ◽  
Kenji Shibata

ABSTRACTHigh quality GaAs/SiO2 MIS( Metal Insulator Semiconductor ) diodes were fabricated using (NH4)2S treatment and photo-assisted CVD( Chemical Vapor Deposition ). The density of states at the GaAs and SiO2 interface is the order of 1011 cm-2eV-1 throughout the forbidden energy range, which is smaller by the order of two than that of the MIS devices made by the conventional CVD process. The mechanism attributable to the interface improvement was investigated through XPS( X-ray Photoelectron Spectroscopy ) analyses.


2005 ◽  
Vol 862 ◽  
Author(s):  
Kanji Yasui ◽  
Jyunpei Eto ◽  
Yuzuru Narita ◽  
Masasuke Takata ◽  
Tadashi Akahane

AbstractThe crystal growth of SiC films on (100) Si and thermally oxidized Si (SiO2/Si) substrates by hot-mesh chemical vapor deposition (HMCVD) using monomethylsilane as a source gas was investigated. A mesh structure of hot tungsten (W) wire was used as a catalyzer. At substrate temperatures above 750°C and at a mesh temperature of 1600°C, 3C-SiC crystal was epitaxially grown on (100) Si substrates. From the X-ray rocking curve spectra of the (311) peak, SiC was also epitaxially grown in the substrate plane. On the basis of the X-ray diffraction (XRD) measurements, on the other hand, the growth of (100)-oriented 3C-SiC films on SiO2/Si substrates was determined to be achieved at substrate temperatures of 750-800°C, while polycrystalline SiC films, at substrate temperatures above 850°C. From the dependence of growth rate on substrate temperature and W-mesh temperature, the growth mechanism of SiC crystal by HMCVD was discussed.


2000 ◽  
Vol 611 ◽  
Author(s):  
Akira Izumi ◽  
Hidekazu Sato ◽  
Hideki Matsumura

ABSTRACTThis paper reports a procedure for low-temperature nitridation of silicon dioxide (SiO2) surfaces using species produced by catalytic decomposition of NH3 on heated tungsten in catalytic chemical vapor deposition (Cat-CVD) system. The surface of SiO2/Si(100) was nitrided at temperatures as low as 200°C. X-ray photoelectron spectroscopy measurements revealed that incorporated N atoms are bound to Si atoms and O atoms and located top-surface of SiO2.


2002 ◽  
Vol 16 (08) ◽  
pp. 1261-1267 ◽  
Author(s):  
M. P. SINGH ◽  
S. A. SHIVASHANKAR ◽  
T. SHRIPATHI

We have studied the chemical composition of alumina ( Al 2 O 3) films grown on Si(100) at different substrate temperatures by metalorganic chemical vapor deposition (MOCVD) using aluminium acetylactonate { Al(acac) 3} as the precursor. We have found that the resulting films of Al 2 O 3 contain substantial amounts of carbon. X-ray photoelectron spectroscopy (XPS) was employed to study the chemical state of carbon present in such films. The XPS spectrum reveals that the carbon present in Al 2 O 3 film is graphitic in nature. Auger electron spectroscopy (AES) was employed to study the distribution of carbon in the Al 2 O 3 films. The AES depth profile reveals that carbon is present throughout the film. The AES study on Al 2 O 3 films corroborates the XPS findings. An investigation of the Al 2 O 3/ Si (100) interface was carried out using cross-sectional transmission electron microscopy (XTEM). The TEM study reveals textured growth of alumina film on Si(100), with very fine grains of alumina embedded in an amorphous carbon-containing matrix.


1989 ◽  
Vol 168 ◽  
Author(s):  
Paul D. Stupik ◽  
Linda K. Cheatham ◽  
John J. Graham ◽  
Andrew R. Barron

AbstractChemical vapor deposition from (MeCp)2Nb(allyl) at atmospheric pressure yields niobium carbide films at temperatures as low as 300°C. X-ray photoelectron spectroscopy (XPS) studies indicate that the bulk films contain a carbide phase and a nearly stoichiometric ratio of niobium to carbon. The morphology of the films has been examined by scanning electron microscopy (SEM).


2006 ◽  
Vol 321-323 ◽  
pp. 1687-1690 ◽  
Author(s):  
Hee Joon Kim ◽  
Dong Young Jang ◽  
Prem Kumar Shishodia ◽  
Akira Yoshida

In the paper, zinc oxide (ZnO) thin films are deposited by plasma enhanced chemical vapor deposition (PECVD) at different substrate temperatures. The ZnO films are characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The analysis results indicate that highly crystalline films with high orientation can be obtained at a substrate temperature of 300 oC with 50 ml/min flow rate from Diethylzinc (DEZ). Furthermore, the investigation of optical property shows that ZnO films are transparent, and the peak transmittance in the visible region is as high as 85%.


Sign in / Sign up

Export Citation Format

Share Document