scholarly journals Azologization of serotonin 5-HT3 receptor antagonists

2019 ◽  
Vol 15 ◽  
pp. 780-788 ◽  
Author(s):  
Karin Rustler ◽  
Galyna Maleeva ◽  
Piotr Bregestovski ◽  
Burkhard König

The serotonin 5-hydroxytryptamine 3 receptor (5-HT3R) plays a unique role within the seven classes of the serotonin receptor family, as it represents the only ionotropic receptor, while the other six members are G protein-coupled receptors (GPCRs). The 5-HT3 receptor is related to chemo-/radiotherapy provoked emesis and dysfunction leads to neurodevelopmental disorders and psychopathologies. Since the development of the first serotonin receptor antagonist in the early 1990s, the range of highly selective and potent drugs expanded based on various chemical structures. Nevertheless, on-off-targeting of a pharmacophore’s activity with high spatiotemporal resolution as provided by photopharmacology remains an unsolved challenge bearing additionally the opportunity for detailed receptor examination. In the presented work, we summarize the synthesis, photochromic properties and in vitro characterization of azobenzene-based photochromic derivatives of published 5-HT3R antagonists. Despite reported proof of principle of direct azologization, only one of the investigated derivatives showed antagonistic activity lacking isomer specificity.

1987 ◽  
Author(s):  
T J Verbeuren ◽  
M J Van Diest ◽  
A G Herman

Atherosclerotic aortas obtained from cholesterol-fed rabbits show a decreased responsiveness to noradrenaline, an increased responsiveness to low concentrations of serotoninand an unaltered responsiveness to prostaglandins. In vitro contractions induced by aggregating platelets are largely due to serotonin liberated during the aggregation. The present study was designed to compare the contractile responses to aggregating platelets inaortas obtained from control and cholesterol-fed rabbits.Male New Zealand rabbits were fed either a control or a 0.3% cholesterol diet during 16 weeks. Macroscopic and microscopic examination of the luminal surface of the aortas obtained from these animals revealed a substantial amount of fatty streaks in the tissuesobtained from the cholesterol-fed rabbits. Segments of the aortic arch of the rabbits were then mounted in organ chambers for isometric tension recording.In both the control and the atherosclerotic aortas increasing concentrations of platelets evoked contractions; the contractions obtained with the lower concentrations of platelets were significantly greater in the atherosclerotic tissues. The maximal responses and the ED50-values were comparable in both groups of blood vessels. No significant differences were observed when platelets obtained from control or hypercholesterolemic rabbits were compared. In the control and the atherosclerotic aortas the thromboxane receptorantagonist BM13505 at 2 x 10-5M did not significantly affect the contractionsto platelets obtained from either control or cholesterol-fed rabbits. The serotonin receptor antagonist ketanserin at 5 x 10-8M nearly abolished the responses to platelets in bothgroups of aortas.These experiments illustrate that (1) thecontractions induced by rabbit platelets in control and atherosclerotic aortas are mediated by serotonin and (2) the responses to platelets, as those to serotonin, are augmented in the atherosclerotic preparations.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1884-1884
Author(s):  
Alissa R. Kahn ◽  
Kimberly A. Hartwell ◽  
Peter G. Miller ◽  
Benjamin L. Ebert ◽  
Todd R. Golub ◽  
...  

Abstract Abstract 1884 Acute myeloid leukemia (AML) is a common and aggressive hematologic malignancy affecting both children and adults which continues to have high mortality rates as well as high morbidity from toxic therapies. New treatments are needed to improve cure rates and decrease morbidity. A niche-based high throughput screen done in a murine system identified candidate small molecules potentially toxic to leukemic stem cells (LSCs) while sparing normal hematopoietic stem cells (HSCs) and bone marrow stroma (Hartwell KA, Miller, PG et al., in preparation). One such compound, SB-216641, demonstrated dose-dependent activity against leukemia in both a cell autonomous and non-autonomous manner, by modifying niche–based support. SB-216641 is a selective serotonin receptor antagonist specific for the 5-HT1B receptor, highlighting a pathway not previously investigated in the context of AML or leukemia stem cell biology. We examined the effects of this candidate small molecule on 7 human primary AML samples. CD34+ cells were isolated from these samples with immunomagnetic beads. Using the colony forming assay to assess kill of progenitor cells, all samples had ≥99% cell kill at 25 μM (10 times the IC-50 found in the murine system). We then assessed the compound's effect on LSCs using the cobblestone area forming cell (CAFC) assay, a standard in vitro stem cell assay. The leukemic cells were pulse treated for 18 hours and washed to remove residual SB-216641 prior to placement on MS-5 murine stroma and therefore only the direct effect on the leukemic cells was measured in this assay. CAFCs were read out at week 5, or week 2 when the sample was FLT3-ITD+ (Chung KY et al, Blood 2005, Vol 105, 77–84). We first tested five samples at 25 μM. All samples formed cobblestone areas in the control setting (46–200 CAFCs/106 cells plated). Four samples had no CAFC formation with SB-216641 and the remaining sample had >95% decrease in CAFC formation. We then performed serial dilutions using the CAFC assay in the human primary samples as well as in HSCs derived from cord blood to obtain the IC-50 for human AML and to ensure that our differential cell kill of LSCs versus normal HSCs held true in the human samples. IC-50 for the human primary leukemias was found to be 630 nanomolar and at 10 μM all leukemic samples were fully killed with 100% survival of normal human HSCs [see figure 1]. As a confirmatory study, using HL60 and U937 human AML cell lines transduced with GFP-luciferase, 500 cells were preincubated with SB-216641 at 25 μM or DMSO control and then injected IV into Nod Scid IL2R-gamma null (NSG) mice and imaged at 5 weeks. In both cell lines, the control mice had engraftment and the mice that received treated cells had no engraftment. HL60 cells were then preincubated with SB-216641 at lower doses (10 and 5 μM) and injected into NSG mice and imaged at 3 weeks. Again, the control mice had engraftment and the mice that received treated cells had no engraftment.Figure 1.Figure 1. 5-HT1B receptor antagonists have not previously been known to be active against AML or leukemic stem cells. Some hematopoietic cells including platelets express serotonin receptors and T-cells specifically have been found to express the 5-HT1b receptor. Selective 5-HT1B receptor antagonists have found to have apoptotic effects in vitro against cell lines of other cancers and may be involved in MAP kinase and P13K/Akt signaling pathways. SB-216641 is a highly promising compound which warrants further investigation. Its high toxicity to LSCs and sparing of normal HSCs make it appealing for possible clinical use in the future. Disclosures: No relevant conflicts of interest to declare.


1970 ◽  
Vol 64 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Lars Terenius

ABSTRACT A comparative investigation was carried out on the modes of action of anti-oestrogenic substances of different chemical structures and of different biological profiles. Most extensively investigated were mesobutoestrol and U-11100A. While meso-butoestrol is only antagonistic when applied locally to a target tissue, U-11100A is a systemic antagonist. The interactions of these compounds with tritium-labelled 17β-oestradiol were tested in vivo and in vitro on mouse uteri and vaginae and in vitro on an experimental rat mammary carcinoma. It was found that meso-butoestrol had a very high competitive affinity for the oestrogen binding sites but that its action was easily reversible and particularly so on the vagina. Since it is not retained its antagonistic activity is only manifested biologically under special circumstances. U-11100A had a lower affinity for the binding sites but its blocking action was much less reversible. By combination with the binding sites to a stable complex of low intrinsic biological activity it prevents the full action of a »true« oestrogen. The results illustrate the complexity in the interactions between oestrogens, anti-oestrogens and the target tissues. To characterize the actions of an anti-oestrogen, both affinity for the binding sites and ease of reversibility should be considered. Furthermore, binding characteristics of different target tissues are not necessarily similar.


2005 ◽  
Vol 289 (2) ◽  
pp. C483-C492 ◽  
Author(s):  
Meirav Zubare-Samuelov ◽  
Merav E. Shaul ◽  
Irena Peri ◽  
Alexander Aliluiko ◽  
Oren Tirosh ◽  
...  

Sweet and bitter taste sensations are believed to be initiated by the tastant-stimulated T1R and T2R G protein-coupled receptor (GPCR) subfamilies, respectively, which occur in taste cells. Although such tastants, with their significantly diverse chemical structures (e.g., sugar and nonsugar sweeteners), may share the same or similar T1Rs, some nonsugar sweeteners and many bitter tastants are amphipathic and produce a significant delay in taste termination (lingering aftertaste). We report that such tastants may permeate rat taste bud cells rapidly in vivo and inhibit known signal termination-related kinases in vitro, such as GPCR kinase (GRK)2, GRK5, and PKA. GRK5 and perhaps GRK2 and GRK6 are present in taste cells. A new hypothesis is proposed in which membrane-permeant tastants not only interact with taste GPCRs but also interact intracellularly with the receptors' downstream shutoff components to inhibit signal termination.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
K. Blowman ◽  
M. Magalhães ◽  
M. F. L. Lemos ◽  
C. Cabral ◽  
I. M. Pires

Essential oils are secondary metabolites with a key-role in plants protection, consisting primarily of terpenes with a volatile nature and a diverse array of chemical structures. Essential oils exhibit a wide range of bioactivities, especially antimicrobial activity, and have long been utilized for treating various human ailments and diseases. Cancer cell prevention and cytotoxicity are exhibited through a wide range of mechanisms of action, with more recent research focusing on synergistic and antagonistic activity between specific essential oils major and minor components. Essential oils have been shown to possess cancer cell targeting activity and are able to increase the efficacy of commonly used chemotherapy drugs including paclitaxel and docetaxel, having also shown proimmune functions when administered to the cancer patient. The present review represents a state-of-the-art review of the research behind the application of EOs as anticancer agents both in vitro and in vivo. Cancer cell target specificity and the use of EOs in combination with conventional chemotherapeutic strategies are also explored.


2020 ◽  
Vol 13 (2) ◽  
pp. 54-65 ◽  
Author(s):  
M.E.A. Bendaha ◽  
H.A. Belaouni

SummaryThis study aims to develop a biocontrol agent against Fusarium oxysporum f.sp. radicis-lycopersici (FORL) in tomato. For this, a set of 23 bacterial endophytic isolates has been screened for their ability to inhibit in vitro the growth of FORL using the dual plate assay. Three isolates with the most sound antagonistic activity to FORL have been qualitatively screened for siderophore production, phosphates solubilization and indolic acetic acid (IAA) synthesis as growth promotion traits. Antagonistic values of the three candidates against FORL were respectively: 51.51 % (EB4B), 51.18 % (EB22K) and 41.40 % (EB2A). Based on 16S rRNA gene sequence analysis, the isolates EB4B and EB22K were closely related to Enterobacter ludwigii EN-119, while the strain EB2A has been assigned to Leclercia adecarboxylata NBRC 102595. The promotion of tomato growth has been assessed in vitro using the strains EB2A, EB4B and EB22K in presence of the phytopathogen FORL. The treatments with the selected isolates increased significantly the root length and dry weight. Best results were observed in isolate EB4B in terms of growth promotion in the absence of FORL, improving 326.60 % of the root length and 142.70 % of plant dry weight if compared with untreated controls. In the presence of FORL, the strain EB4B improved both root length (180.81 %) and plant dry weight (202.15 %). These results encourage further characterization of the observed beneficial effect of Enterobacter sp. EB4B for a possible use as biofertilizer and biocontrol agent against FORL.


Sign in / Sign up

Export Citation Format

Share Document