scholarly journals Synthesis and study of polyfunctional silicon-containing amines as adhesion promoters of epoxyamine compounds

2020 ◽  
Vol 64 (11) ◽  
pp. 28-32
Author(s):  
Christina Y. Ivanova ◽  
◽  
Mikhail V. Kuzmin ◽  
Oleg A. Kolyamshin ◽  
Nikolay I. Koltsov ◽  
...  

At present, in order to obtain high-tech hybrid products, high demands are placed on modern adhesives for creating durable joints between dissimilar materials. It is known that adhesion depends on the compatibility of the adhesives with the surfaces of the materials. For epoxy compositions, amine compounds are the main hardeners. In this regard, in the presented work, silicon-containing amines were synthesized based on polyfunctional aminoalkoxysiloxanes for epoxy compositions, the strength of attachment of which to various metal substrates was studied using these adhesion promoters. Aminoalkoxysiloxanes were prepared by reacting 3-aminopropyltriethoxysilane with monoethanolamine in nitrogen at atmospheric pressure in the presence of a binary antioxidant and catalytic amounts of an alkali metal alcoholate. To carry out the reaction in a homogeneous phase, the reaction mixture was heated to a temperature of 100-110 °C and distilled off to 90% of ethanol from the theoretically calculated amount. Further, the reaction was carried out at a reduced temperature of 10-20 millimeter of mercury pressure until the release of alcohol stops. At the same time, gravimetric control was carried out and the refractive index of the reaction mixture was measured. As a result, aminoalkoxysilanes were obtained in the form of light-yellow oily liquids. The structure of the obtained compounds was investigated by IR-spectroscopy on a Fourier spectrophotometer FSM-1202 and 1H NMR-spectroscopy on a high-resolution BrukerWM-250 NMR-spectrometer. It was found that under the selected synthesis conditions, aminopropyl-tri-(2-aminoethoxy)silane is obtained with the highest yield of 97.6% at a molar ratio of 3-aminopropyltriethoxysilane (AGM-9) with monoethanolamine 1: 3. The obtained compounds were used in the composition of epoxy compounds in order to improve their physical and mechanical properties. The adhesion properties of epoxy compositions based on ED-22 epoxy resin and isophorone diamine were studied using synthesized polyfunctional aminoalkoxysiloxanes as adhesion promoters. It was found that the most effective adhesion promoter is aminopropyl-tri-(2-aminoethoxy) silane.

2020 ◽  
Vol 7 (4) ◽  
pp. 199-203
Author(s):  
K. Yu. Ivanova ◽  
M. V. Kuzmin ◽  
N. I. Kol’tsov

Currently, in order to obtain high-tech hybrid products, modern adhesives have high requirements for creating strong joints between dissimilar materials. It is known that adhesion depends on the compatibility of the adhesives with the surfaces of the materials. Amine compounds are the main hardeners for epoxy compositions. That is why, in this article, we synthesized silicon-containing amines based on polyfunctional aminoalkoxysiloxanes for epoxy compositions. Aminoalkoxysiloxanes were prepared by the interaction of 3-aminopropyltriethoxysilane with monoethanolamine in nitrogen at atmospheric pressure in the presence of a binary antioxidant and catalytic amounts of an alkali metal alcoholate. During the reaction in a homogeneous phase, the reaction mixture was heated to a temperature of 100-110 °C and distilled off to 90% of ethanol from the theoretically calculated amount. Further, the reaction was carried out at a reduced temperature of 10-20 mmHg pressure until the release of alcohol stops. At the same time, gravimetric control was carried out and the refractive index of the reaction mixture was measured. As a result, aminoalkoxysilanes were obtained in the form of light-yellow oily liquids. The structure of the obtained compounds was investigated by IR spectroscopy on an FSM-1202 Fourier spectrophotometer and 1H NMR spectroscopy on a high-resolution BrukerWM-250 NMR spectrometer. It was found that under the selected synthesis conditions, aminopropyltri-(2-aminoethoxy)silane is obtained with the highest yield of 97.6% at a molar ratio of 3-aminopropyltriethoxysilane AGM-9 with monoethanolamine 1:3.


Author(s):  
Yan Pyrig ◽  
Andrey Galkin ◽  
Pavlo Roman

Asphalt pavement is permanently influenced by various environmental conditions and traffic load. Because of this after a certain period numerous defects may appear on the surface of the road pavement. These defects include peeling, chipping, pots, cracks etc. The low water proof resistance of the asphalt concrete (conditioned by low adhesion of the bitumen to aggregate surface) is considered to be one of the reasons for appearance of these defects. Adhesion promoters’ use is the most common method to increase adhesion activity of pavement bitumen. Goal. The objective of the current research work is the evaluation of influence of the domestic adhesion promoter iDOP on the conventional and adhesion properties of bitumen. Methodology. To achieve this goal, the following was done: the effect of the adhesive promoter iDOP on the standard quality indicators of bitumen was determined according the requirements of the current standards DSTY 4044 and SOU 45.2-00018112-067; the effect of the adhesive promoter on the adhesion of bitumen to the glass surface (according to the DSTU B.V.2.7-81 method) and to the surface of aggregates with different mineralogy was evaluated by the rotating bottle method according to DSTU EN 12697-11; the thermal stability of the iDOP-PH promoter was tested by simulating the technological ageing of bitumen according to the method given in GOST 18180 and the RTFOT method. Results. Grounding on the experimental data obtained, it was found that the adhesive promoter iDOP-PH does not affect the standard indicators of the quality of bitumen (penetration, softening and breaking point temperatures, ductility). During hardening with the RTFOT method, a slight inhibitory effect of the promoter is observed, which appears as an increase in the values of residual penetration and ductility compared to bitumen without promoter. The iDOP-PH promoter increases the adhesive capacity of bitumen, which is confirmed by the adhesion data determined by the improved method given in GOST B.V.2.7-81 and the rolling bottle method. Originality. It is shown that the iDOP-PH promoter has a relevantly low thermal stability. With this the main factor affecting the decrease in thermal stability is the long time exposing of the binder at high temperature by GOST B.V.2.7-81 method. Practical value. It is shown that the promoter concentrations recommended by the supplier are insufficient, and to ensure the required values of the adhesion (standardized in СОУ 45.2-00018112-067) it is advisable to increase the concentration of the iDOP-PH promoter in bitumen to 0.3 - 0.6%.


2007 ◽  
Vol 26-28 ◽  
pp. 1113-1116 ◽  
Author(s):  
Hee Jung Lee ◽  
Seung Min Hyun ◽  
Hak Joo Lee ◽  
Dae Geun Choi ◽  
Dong Il Lee ◽  
...  

The reliable reproducibility of nano patterns or other nano structures is one of many issues in the nano-imprint lithography process. An important prerequisite for reproducibility is suitable adhesion properties of adhesion promoters or anti-sticking layer. In this study, rhombus shaped symmetrical probe with a flat tip was developed and fabricated using MEMS fabrication technique. For the experimental setup of the adhesion test using a UV curable PAK01 resin coated AFM tip with several adhesion promoters, the flat tip is covered by PAK01 resist using micromanipulator. Anti-sticking layers of silane agents were prepared on the tip by vapor deposition method. Adhesion force between various adhesion promoters (GPTS, APMDS, APTS, DUV30J, O2 planairzation) and PAK01 resist and the force between anti-sticking layer (FOTS, DDMS) and PAK01 resist were evaluated using the force-distance mode of AFM. Adhesion force of GPTS and FOTS are about 7180 nN and 1660 nN, respectively.


Author(s):  
Жанна Владимировна Вечеркина ◽  
Наталия Владимировна Чиркова ◽  
Михаил Анатольевич Крючков ◽  
Виктор Сергеевич Калиниченко

Развитие технологий, основанных на использовании низкотоксичных материалов, позволит в скором будущем начать их применение в медицине. Применение наночастиц серебра, меди, кремния, цинка, титана, кобальта в качестве модифицирующей добавки позволит оказать активное влияние на структуру исходных материалов и изменение их свойств, а именно улучшение физико-механических, физико-химических и токсико-гигиенических свойств материалов. Наноразмерные частицы кремния, введенные в фиксирующие стоматологические материалы, приводят к улучшению физико-химических, физико-механических свойств кристаллизующихся материалов, а малая теплопроводность кремния может увеличить его рабочее время и снизить выделение тепла при реакции кристаллизации. Так как от этих характеристик зависит объем манипуляций, при фиксации ортопедических конструкций на опорных зубах целесообразно было бы привести рабочее время твердения к чистому времени твердения, что позволит увеличить объем манипуляций приготовленной массой без ухудшения ее свойств. Разработка высокопрочных, биосовместимых, высокотехнологичных нанопластмасс для базисов съемных пластиночных протезов является актуальной проблемой повышения качества жизни пациентов. Модификация наноразмерными частицами серебра, кремния акрилового полимера позволит улучшить такие физико-механические свойства, как ударную вязкость, прочность, температуростойкость, барьерные свойства, уменьшить усадку полимера на этапе полимеризации, в отличие от уже известных отечественных и дорогостоящих импортных полимеров. Наноразмерные частицы кремния, серебра являются сокатализаторами метилметакрилата, влияющими на уменьшение количества остаточного мономера после процесса полимеризации, тем самым повышая санитарно-химические и токсико-гигиенические характеристики полимера. Все вышеизложенное позволило сформулировать цель исследований по наноструктурированным материалам под руководством профессора …посвящается памяти профессора, д.м.н. Каливраджияна Э.С. The development of technologies based on the use of low-toxic materials will make it possible to begin their application in medicine in the near future. The use of nanoparticles of silver, copper, silicon, zinc, titanium, cobalt as a modifying additive will make it possible to actively influence the structure of the starting materials and change their properties, namely, improve the physicomechanical, physicochemical and toxicohygienic properties of materials. Nanosized silicon particles introduced into fixing dental materials lead to an improvement in the physicochemical, physicomechanical properties of crystallizing materials, and the low thermal conductivity of silicon can increase its working time and reduce heat generation during the crystallization reaction. Since the volume of manipulations depends on these characteristics, when fixing orthopedic structures on abutment teeth, it would be advisable to bring the working time of hardening to a pure hardening time, which will increase the volume of manipulations with the prepared mass without deteriorating its properties. The development of high-strength, biocompatible, high-tech nanoplastics for the bases of removable plate prostheses is an urgent problem to improve the quality of life of patients. Modification of acrylic polymer with nano-sized particles of silver and silicon will improve such physical and mechanical properties as impact strength, strength, temperature resistance, barrier properties, and reduce polymer shrinkage at the stage of polymerization, in contrast to the already known domestic and expensive imported polymers. Nanosized particles of silicon, silver are cocatalysts of methyl methacrylate, affecting the reduction of the amount of residual monomer after the polymerization process, thereby increasing the sanitary-chemical and toxic-hygienic characteristics of the polymer. All of the above made it possible to formulate the goal of research on nanostructured materials under the guidance of the professor …dedicated to the memory of the professor, d.m.s. Kalivrajiyan E.S.


Author(s):  
O. V. Karmanova ◽  
S. G. Tikhomirov ◽  
E. V. Lintsova ◽  
L. V. Popova

Studies of experimental adhesion modifiers based on a mixture of fatty acids from the production of light vegetable oils. The properties of rubber compounds and their vulcanizates obtained using experimental adhesion promoters KK with cobalt content from 7.5 to 16.5% are investigated. The plastic-elastic and vulcanization properties of the properties of breaker rubber compounds based on polyisoprene, the physical and mechanical properties of breaker rubbers and the bond strength in the “rubber-brass-plated steel cord system” were studied. When testing belt rubbers containing experienced adhesion promoters or an imported analog of Manobond 680C, the following features were revealed. The plasticity of the prototypes was in the range of 0.2-0.4. This indicates satisfactory processing properties. The Mooney viscosity of the prototypes was lower than that of the production sample. The use of experienced adhesion promoters instead of the analogue (Manobond 680C) increases the resistance to scorching. On the basis of the analysis of elastic-strength properties, it was found that in terms of the conditional tensile strength, the prototypes were inferior to the serial ones. However, rubbers containing the KK-12, KK-13.5, KK-15 promoters met the control standards. The tensile elongation at break of the experimental rubbers is higher than that of the serial sample. This may indicate the formation of a more uniform cure network in the presence of the test products. When testing rubber-metal-hard composites, it was noted that, under normal conditions, the experienced adhesion promoters have advantages over Manobond 680C. However, at elevated temperatures, under conditions of salt and steam-air aging, they are slightly inferior to Manobond 680C. It has been established that the experimental adhesion promoters provide the required set of technical properties of belt rubbers with a CO2 + content of 12–16.5% wt. Thus, it is possible to recommend the adhesion promoters KK 12, KK-13.5, KK 15 for practical use in the composition of belt rubber compounds. This will allow replacing a foreign-made product and reducing the cost of production.


2013 ◽  
Vol 781-784 ◽  
pp. 239-242
Author(s):  
Lei Wang ◽  
Peng Xiao

In this paper, SiMgAl hydotalcite synthesis conditions were investigated using co-precipitation method, within a relatively stable pH environment of 8~9. Our research, analysis and discussion focused on the effects of major factors, such as material molar ratio ,silicon content and aged condition, on the structures of synthetic products. To achieve stable and accurate data, synthetic products were characterized by XRD and IR under the identical conditions. As shown in the results, it is suggested that the best Crystallization temperature is 70°C, molar ratio of Mg to Al is 3:1, and the best content of Silicon is 0.015mol/mol.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shameer Hisham ◽  
Hairul Anuar Tajuddin ◽  
Norazilawati Muhamad Sarih ◽  
Nur Zarith Diana Diana Zakaria ◽  
Zul Hazrin Zainal Abidin ◽  
...  

Purpose In this work, the blends of poly(methyl methacrylate), PMMA and poly(methyl vinyl ether-alt-maleic acid monoethyl ester), PMVEMA-ES are studied as organic coatings to evaluate the impact of intermolecular hydrogen bonding on the physical and thermal characteristics of the prepared coatings. Design/methodology/approach PMMA (Mw = 120,000 g mol-1) was chosen as our binder material. Due to the low adhesion property of PMMA on polar substrates, it was blended with PMVEMA-ES, which contains polar –COOH groups, to improve the adhesion and thermal properties of the coatings by forming intermolecular hydrogen bonds. A cross-hatch adhesion test was carried out to evaluate the adhesion strength of different ratios of PMMA/PMVEMA-ES blends as coatings. In addition, changes in the glass-transition temperature, Tg as the composition varies were studied using Differential Scanning Calorimetry, DSC. Then, glossiness and hiding power tests were also conducted to evaluate the physical properties of the prepared coatings. Findings Upon a closer look at the DSC results, it was found that blends consisting of 12.5, 25.0 and 87.5 wt. % PMMA were completely compatible due to the presence of only a single Tg in their thermograms. Other blend compositions showed two distinct Tgs, indicating partial compatibility. Furthermore, the addition of PMVEMA-ES caused the Tg of PMMA to shift to lower temperatures, a strong indication of intermolecular hydrogen bonding interactions between the two components. From the cross-hatch adhesion results, the addition of PMVEMA-ES improved the adhesion properties of PMMA coating, except for blends consisting of 62.5 and 75.0 wt. % PMMA possibly due to the partial incompatibility between the two components. These findings were further corroborated with the results of glossiness and hiding power measurements. The superior result was seen for the blend consisting of 12.5 wt. % PMMA with strong adhesion property, high glossiness, compatibility and high translucency. Practical implications PMVEMA-ES can potentially be used as an adhesion promoter in PMMA-based coating formulations. Originality/value This is the first report on the properties of PMMA/PMVEMA-ES blends as coatings.


2020 ◽  
Vol 63 (7) ◽  
pp. 126-132
Author(s):  
Lyubov V. Furda ◽  
◽  
Evgenia A. Tarasenko ◽  
Sofya N. Dudina ◽  
Olga E. Lebedeva ◽  
...  

In the present work amorphous silica-aluminas were synthesized by the coprecipitation method during the hydrolysis of an alcohol solution of tetraethoxysilane (with a tetraethoxysilane: alcohol mass ratio of 1: 1) and 6% aqueous solution of aluminum nitrate at pH values of 1, 3, and 10. The Si/Al molar ratio for all synthesized samples were 4.72 (± 0.29). The amorphous character of the investigated materials was confirmed by X-ray phase analysis. According to the results of scanning electron microscopy, it was found that the resulting powders have particles with a size of 1-20 μm. It was shown that the conditions of synthesis affected the specific surface area and porosity of the materials under study. By the method of low-temperature adsorption-thermodesorption of nitrogen it was established that silica-aluminas obtained under acidic conditions were microporous materials. For the sample obtained under alkaline conditions (pH = 10), the contribution of macropores is very significant. A decrease in surface area is observed as the pH of the synthesis increases. The Hammett indicator method was used to identify and quantify surface centers of different acidity. All studied silica-aluminas are characterized by the presence of both Brønsted basic (pKax from 7 to 12.8) and acidic (pKax from 0 to 7) centers, and Lewis basic (pKax from -4.4 to 0) with a pronounced maximum at pKax = 1.02. It was found that the synthesis conditions had a significant effect on the concentration of active centers. The values of the Hammett function are practically the same for the 3 studied silica-aluminas and describe the studied samples as materials of medium acidity. The variety of Lewis and Brønsted centers on the surface indicates the amphoteric properties of the materials under study. This gives the samples the properties of polyfunctional sorbents and catalysts.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1094
Author(s):  
Erwan Paineau ◽  
Pascale Launois

Synthetic imogolite-like nanotubes (INT) with well-defined diameters represent a considerable opportunity for the development of advanced functional materials. Recent progress has made it possible to increase their aspect ratio and unique self-organization properties were evidenced. We suggest that slight modification of the synthesis conditions may drastically affect the resulting liquid-crystalline properties. In this work, we investigate how the precursor’s [Al]/[Ge] molar ratio (R’) impacts the morphology and the colloidal properties of aluminogermanate INTs by combining a multi-scale characterization. While only double-walled nanotubes are found for R’ ≥ 1.8, the presence of single-walled nanotubes occurs when the ratio is lowered. Except for the lowest R’ ratio investigated (R’ = 0.66), all synthetic products present one-dimensional shapes with a high aspect ratio. Small-angle X-ray scattering experiments allow us to comprehensively investigate the colloidal properties of the final products. Our results reveal that a liquid-crystalline hexagonal columnar phase is detected down to R’ = 1.33 and that it turns into a nematic arrested phase for R’ = 0.90. These results could be useful for the development of novel stimuli-responsive nanocomposites based-on synthetic imogolite nanotubes.


2007 ◽  
Vol 1007 ◽  
Author(s):  
Aracely Hernandez ◽  
Patricia Esquivel-Ferriño ◽  
Idalia Gomez ◽  
Lucia Cantu

ABSTRACTIn the present work, sol-gel method was used to incorporate in a ceramic material a non steroidal anti-inflammatory drug (piroxicam) as model drug. The incorporation of the drug in the SiO2 network was carried out at different sol-gel synthesis parameters, such as pH (3 and 5) and the alkoxide/water ratio (1:6 and 1:8). The biomaterial obtained was analyzed by thermal analysis TGA-DTA, infrared spectroscopy (FTIR), Scanning Electronic Microscopy (SEM) and X-ray diffraction (XRD); specific surface area and porosity were analyzed from nitrogen adsorption isotherm. Better drug incorporation into the material was achieved at the synthesis conditions of pH 5 and 1:6 alkoxide/water molar ratio.


Sign in / Sign up

Export Citation Format

Share Document