Science Education and Artificial Intelligence – A Chatbot on Magic and Quantum Computing as an Educational Tool

2020 ◽  
pp. 137-142
Author(s):  
Miquel Duran ◽  
Silvia Simon ◽  
Fernando Blasco

Artificial Intelligence (AI) has entered the realm of higher education and has become an impressive emerging field. Since AI is starting also to be applied to Science Education, here an assay is provided while the opportunities of AI in a particular case of Science Education are reviewed and assessed, namely a chatbot on Quantum Computing, another awesome emerging field. Indeed, Quantum Computing is based on a set of principles that are difficult to understand by the general population, so the ultimate goal of such a chatbot is to learn a few complex concepts in this field and to increase public understanding and awareness of Science. Actually, AI is starting also to be applied to Science Communication, even though progress is not so advanced as in learning.Magic tricks based on mathematical principles are especially well suited to teach difficult concepts, like those related to Quantum Science. They are used to explain entanglement, quantum cryptography, the superposition principle, and other quantum-related concepts – along with other physical and chemical core elements like Entropy.Developing a chatbot is not especially difficult (e.g., with Botpress, Watson, Dialogflow, Manybot, etc.). One may build either scripted, intelligent, or application bots. Indeed, the first ones are those that are easiest to create, and correspond to the first phase of the current project. Intelligent bots understand natural spoken language and correspond to a second phase in this project. In general, Bots are connected to a real-world messaging service, like Facebook Messenger, Twitter, Telegram, Slack, etc.

1998 ◽  
Vol 11 (2) ◽  
pp. 910-911
Author(s):  
M. Gerbaldi

Astronomy offers a unique opportunity for promoting the science teaching in its present crisis. Astronomy can be introduced at various levels and become the medium by which both primary science education and public understanding of science are stimulated.At the University level, astronomy can be introduced in the curricula of university colleges and be a subject for M.Sc. and Ph.D. degrees. Astronomy, can give students the opportunity to work scientifically from observations and known physical laws in order to derive knowledge in another field of science. Astronomy can be taught with less formalism and more experimentation, giving students a feel for the link between a phenomenon and its theoretical representation, and how and why a given observation can be represented by different theoretical models.


1981 ◽  
Vol 103 (4) ◽  
pp. 491-496 ◽  
Author(s):  
J. T. Kuo ◽  
L. S. G. Kovasznay

A novel flow configuration was explored for the study of the behavior of drag reducing polymers. A screw pump consisting of a smooth cylinder and a concentrically placed screw was used to create a strongly three-dimensional but essentially laminar flow. In the first phase of the study, the static pressure head developed by the screw pump was measured as a function of polymer concentration (polyox 10 to 100 ppm in water). A large increase of the developed head was observed that behaved in an analogous manner to drag reduction as far as concentration and straining of the polymer solution was concerned. In the second phase of the study, a new apparatus was constructed and the additional parameter of a superimposed through flow was included and the degree of failure of the superposition principle was established. Sensitivity of the phenomenon to chemicals like HCl, HNO3, and NaOH in the polymer solution was also studied. When the effect of these chemicals on the polymer solution flow behavior was presented in terms of the pH value of the polymer solution, it showed a similar trend to those observed in drag reduction.


Significance These are: artificial intelligence, semiconductors, quantum computing, genetics, biotechnology, neuroscience and aerospace. Impacts It is not always useful to view technological competition between China and the West as a ‘race’. China will likely burn significant capital just to achieve parity with advanced countries, and may never achieve it. Low margins will encourage protectionism and import substitution, with an impact on efficiency and productivity.


Author(s):  
Paul Nemitz

Given the foreseeable pervasiveness of artificial intelligence (AI) in modern societies, it is legitimate and necessary to ask the question how this new technology must be shaped to support the maintenance and strengthening of constitutional democracy. This paper first describes the four core elements of today's digital power concentration, which need to be seen in cumulation and which, seen together, are both a threat to democracy and to functioning markets. It then recalls the experience with the lawless Internet and the relationship between technology and the law as it has developed in the Internet economy and the experience with GDPR before it moves on to the key question for AI in democracy, namely which of the challenges of AI can be safely and with good conscience left to ethics, and which challenges of AI need to be addressed by rules which are enforceable and encompass the legitimacy of democratic process, thus laws. The paper closes with a call for a new culture of incorporating the principles of democracy, rule of law and human rights by design in AI and a three-level technological impact assessment for new technologies like AI as a practical way forward for this purpose. This article is part of a theme issue ‘Governing artificial intelligence: ethical, legal, and technical opportunities and challenges’.


2015 ◽  
Vol 95 (2) ◽  
pp. 203-214 ◽  
Author(s):  
M.G. Kleinhans ◽  
A.J. Verkade ◽  
T. van Wessel ◽  
M.A.S. Bastings ◽  
W.A. Marra ◽  
...  

AbstractLike earth and planetary scientists, most children are curious about the world, the solar system and the rest of the universe. However, for various reasons primary schools emphasise language and calculus rather than natural sciences. When science is taught, examination systems often favour knowledge of the ‘right’ answer over the process of investigation and logical reasoning towards that answer. In order to continue to spark children's curiosity and their motivation to learn and discover, science education hubs at universities and science museums could collaborate more with schools and teachers, and are beginning to do so. The objective of this position paper is to report on recent experiences in earth and planetary science education for pupils in primary and secondary education, to provide examples and inspiration for scientists. We report three examples of initiation and consolidation of science education in primary schools in the Netherlands: (1) a focus on asking questions and seeking information to reason towards the answer, initiated with a classroom game, Expedition Mundus, (2) bringing pupils and teachers together outside their school in the science museum to gain confidence and self-efficacy, and (3) having children ask their own questions and do their own research guided by the empirical cycle, for example on experimentation on sandbox scale models of channels and crater lake deltas as found on Mars. The focus on other planets, fictitious and real, stimulates pupils to ask questions about planet Earth. Finally, we argue that involvement of more scientists in science education would not only benefit primary and secondary schools and future students but also university education and science communication with society.


2020 ◽  
pp. 1-5
Author(s):  
Bahman Zohuri ◽  
◽  
Farhang Mossavar Rahmani ◽  

Companies such as Intel as a pioneer in chip design for computing are pushing the edge of computing from its present Classical Computing generation to the next generation of Quantum Computing. Along the side of Intel corporation, companies such as IBM, Microsoft, and Google are also playing in this domain. The race is on to build the world’s first meaningful quantum computer—one that can deliver the technology’s long-promised ability to help scientists do things like develop miraculous new materials, encrypt data with near-perfect security and accurately predict how Earth’s climate will change. Such a machine is likely more than a decade away, but IBM, Microsoft, Google, Intel, and other tech heavyweights breathlessly tout each tiny, incremental step along the way. Most of these milestones involve packing more quantum bits, or qubits—the basic unit of information in a quantum computer—onto a processor chip ever. But the path to quantum computing involves far more than wrangling subatomic particles. Such computing capabilities are opening a new area into dealing with the massive sheer volume of structured and unstructured data in the form of Big Data, is an excellent augmentation to Artificial Intelligence (AI) and would allow it to thrive to its next generation of Super Artificial Intelligence (SAI) in the near-term time frame.


2021 ◽  
Vol 11 (9) ◽  
pp. 522
Author(s):  
Anna Beniermann ◽  
Laurens Mecklenburg ◽  
Annette Upmeier zu Belzen

The ability to make evidence-based decisions, and hence to reason on questions concerning scientific and societal aspects, is a crucial goal in science education and science communication. However, science denial poses a constant challenge for society and education. Controversial science issues (CSI) encompass scientific knowledge rejected by the public as well as socioscientific issues, i.e., societal issues grounded in science that are frequently applied to science education. Generating evidence-based justifications for claims is central in scientific and informal reasoning. This study aims to describe attitudes and their justifications within the argumentations of a random online sample (N = 398) when reasoning informally on selected CSI. Following a deductive-inductive approach and qualitative content analysis of written open-ended answers, we identified five types of justifications based on a fine-grained category system. The results suggest a topic-specificity of justifications referring to specific scientific data, while justifications appealing to authorities tend to be common across topics. Subjective, and therefore normative, justifications were slightly related to conspiracy ideation and a general rejection of the scientific consensus. The category system could be applied to other CSI topics to help clarify the relation between scientific and informal reasoning in science education and communication.


Impact ◽  
2021 ◽  
Vol 2021 (4) ◽  
pp. 27-29
Author(s):  
Naoko Kato-Nitta

What makes research important is an important philosophical question that is a consideration for many researchers. Further important considerations are the public's perception of science and how an individual's perception of science and technology is shaped. These are some of the complex ideas that social scientist Dr Naoko Kato-Nitta, Department of Statistical Data Science, Institute of Statistical Mathematics, Japan, is exploring. She is working on a series of projects related to public perceptions and attitudes towards different scientific disciplines and fields. She hopes that answering such important questions will facilitate the creation of a science communication model for the public understanding of science. Kato-Nitta's research focuses on human behaviour and psychology and how it relates to issues at the interface of technology and society. A key question that she is seeking to answer from the standpoint of cultural capital is how the extent of the general public's participation in science communication can be determined. In the first research to connect social stratification theory and science communication research, Kato-Nitta divided the concept of Bourdieu's cultural capital into two sub-concepts: scientific and technical cultural capital and literary and artistic cultural capital. She went on to consider how these two types of cultural capital affect the exhibit-viewing behaviours of the general public.


1982 ◽  
Vol 21 ◽  
Author(s):  
M. P. Anderson ◽  
D. J. Srolovitz ◽  
G. S. Grest ◽  
P. S. Sahni

The physical and chemical properties of materials are determined in part by microstructure. Grain orientation and size in polycrystalline aggregates affect, for example, yield strength, catalytic efficiency, chemisorption, physisorption, fracture and a host of other properties. The final grain morphology is often determined by thermal processing, addition of a second phase, deformation, etc. However, in order to effectively tailor the microstructure for specific applications, the mechanism and kinetics of grain growth must be known. Unfortunately, present theories predict grain growth kinetics (1–3) which often differ from experimental observation, have little predictive ability with respect to microstructure and are not easily generalized to account for experimentally controllable factors.


Sign in / Sign up

Export Citation Format

Share Document