scholarly journals Role of Cytokines and Transcription Factors in Periodontitis: A Review of Cellular and Molecular Mechanisms

2015 ◽  
Vol 11 (4) ◽  
pp. 125-138
Author(s):  
Anne Carolina Eleutério Leite ◽  
Valéria Martins de Araújo Carneiro ◽  
Júlia Faria Nunes ◽  
André Cruz de Sousa ◽  
Maria Imaculada Muniz-Junqueira ◽  
...  
Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 100 ◽  
Author(s):  
Yizhou Jiang ◽  
Fengxia Yan ◽  
Zhongping Feng ◽  
Philip Lazarovici ◽  
Wenhua Zheng

Dietary restriction (DR), which is defined as a reduction of particular or total nutrient intake without causing malnutrition, has been proved to be a robust way to extend both lifespan and health-span in various species from yeast to mammal. However, the molecular mechanisms by which DR confers benefits on longevity were not yet fully elucidated. The forkhead box O transcription factors (FOXOs), identified as downstream regulators of the insulin/IGF-1 signaling pathway, control the expression of many genes regulating crucial biological processes such as metabolic homeostasis, redox balance, stress response and cell viability and proliferation. The activity of FOXOs is also mediated by AMP-activated protein kinase (AMPK), sirtuins and the mammalian target of rapamycin (mTOR). Therefore, the FOXO-related pathways form a complex network critical for coordinating a response to environmental fluctuations in order to maintain cellular homeostasis and to support physiological aging. In this review, we will focus on the role of FOXOs in different DR interventions. As different DR regimens or calorie (energy) restriction mimetics (CRMs) can elicit both distinct and overlapped DR-related signaling pathways, the benefits of DR may be maximized by combining diverse forms of interventions. In addition, a better understanding of the precise role of FOXOs in different mechanistic aspects of DR response would provide clear cellular and molecular insights on DR-induced increase of lifespan and health-span.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lidong Hao ◽  
Shubing Shi ◽  
Haibin Guo ◽  
Jinshan Zhang ◽  
Peng Li ◽  
...  

AbstractSilicon plays a vital role in plant growth. However, molecular mechanisms in response to silicon have not previously been studied in wheat. In this study, we used RNA-seq technology to identify differentially expressed genes (DEGs) in wheat seedlings treated with silicon. Results showed that many wheat genes responded to silicon treatment, including 3057 DEGs, of which 6.25% (191/3057) were predicted transcription factors (TFs). Approximately 14.67% (28 out of 191) of the differentially expressed TFs belonged to the MYB TF family. Gene ontology (GO) enrichment showed that the highly enriched DEGs were responsible for secondary biosynthetic processes. According to KEGG pathway analysis, the DEGs were related to chaperones and folding catalysts, phenylpropanoid biosynthesis, and protein processing in the endoplasmic reticulum. Moreover, 411 R2R3-MYB TFs were identified in the wheat genome, all of which were classified into 15 groups and accordingly named S1–S15. Among them, 28 were down-regulated under silicon treatment. This study revealed the essential role of MYB TFs in the silicon response mechanism of plants, and provides important genetic resources for breeding silicon-tolerant wheat.


2007 ◽  
Vol 193 (2) ◽  
pp. 195-207 ◽  
Author(s):  
Dominique A Glauser ◽  
Werner Schlegel

FOXO transcription factors critically control fundamental cellular processes, including metabolism, cell differentiation, cell cycle arrest, DNA repair, and other reactions to cellular stress. FOXO factors sense the balance between stimuli promoting growth and differentiation versus stress stimuli signaling damage. Integrated through the FOXO system, these divergent stimuli decide on cell fate, a choice between proliferation, differentiation, or apoptosis. In pancreatic β cells, most recent evidence highlights complex FOXO-dependent responses to glucose, insulin, or other growth factors, which include regulatory feedback. In the short term, FOXO-dependent mechanisms help β cells to accomplish their endocrine function, and may increase their resistance to oxidative stress due to transient hyperglycemia. In the long term, FOXO-dependent responses lead to the adaptation of β cell mass, conditioning the future ability of the organism to produce insulin and cope with changes in fuel abundance. FOXO emerges as a key factor for the maintenance of a functional endocrine pancreas and represents an interesting element in the development of therapeutic approaches to treat diabetes. This review on the role of FOXO transcription factors in pancreatic β cells has three parts. In Part I, FOXO transcription factors will be presented in general: structure, molecular mechanisms of regulation, cellular functions, and physiological roles. Part II will focus on specific data about FOXO factors in pancreatic β cells. Lastly in Part III, it will be attempted to combine general and β cell-specific knowledge with the aim to envisage globally the role of FOXO factors in β cell-linked physiology and disease.


2008 ◽  
Vol 389 (3) ◽  
pp. 279-283 ◽  
Author(s):  
Daniel G. Sedding

Abstract Forkhead box O (FoxO) transcription factors are important downstream targets of the PI3K/Akt signaling pathway and crucial regulators of cell fate. This function of FoxOs relies on their ability to control diverse cellular functions, including proliferation, differentiation, apoptosis, DNA repair, defense against oxidative stress and ageing. FoxOs are regulated by a variety of different growth factors and hormones, and their activity is tightly controlled by post-translational modifications, including phosphorylation, acetylation, ubiquitination and interaction with different proteins and transcription factors. This brief review focuses on the molecular mechanisms, cellular effects and resulting organismal phenotypes generated by differentially regulated FoxO proteins and discusses our current understanding of the role of FoxOs in disease and ageing processes.


2020 ◽  
Vol 2 (338) ◽  
pp. 5-11
Author(s):  
A. K. Rakhmetullina ◽  
S. K. Turasheva ◽  
A. A. Bolshoy ◽  
A. T. Ivashchenko

The molecular mechanisms for increasing plant productivity remain poorly understood. Genes of C2H2, GRAS, ERF transcription factors (TFs) families play a key role in the physiological processes of plants, including wheat. In recent years, the important role of miRNAs in the regulation of the expression of many genes involved in the formation of productivity has been established. Wheat miRNA (mRNA-inhibiting RNA) target genes are involved in the regulation of the development of flowers, seeds, root, shoots, and responses to abiotic and biotic stresses. The miRNAs binding sites in mRNAs of C2H2, ERF, GRAS TFs families were performed using the MirTarget program, which calculates the free energy of miRNA binding with mRNA, the schemes and positions of nucleotide interactions with binding sites. Wheat genes were used as the object of the study, since wheat is one of the main grain crops in Kazakhstan and in many other countries. The presence of miRNA binding sites with high nucleotide complementarity in mRNA of C2H2, ERF, GRAS TF genes of wheat was shown. All binding sites of these miRNAs were located in the CDS of mRNA target genes. Of the 125 miRNAs of T. aestivum, miR319-3p efficiently bound with mRNA of C2H2 family genes with the value of ΔG/ΔGm equal 91 %. miR7757-5p interacted with mRNA of ERF and GRAS family genes with the value of ΔG/ΔGm equal to 92 % and 90 % respectively. miR9778-5p bound with mRNA of C2H2, ERF, GRAS family genes to varying degrees. Each of the miR408-3p, miR9780-3p, and miR9778-5p had four target genes with the value of ΔG/ΔGm equal to 87 % and 89 %. These data indicate the dependency of C2H2, GRAS, ERF TFs families expression on miRNA. The obtained results expand the fundamental ideas about the regulatory mechanisms of miRNA in the process of plant growth and development.


2006 ◽  
Vol 86 (2) ◽  
pp. 465-514 ◽  
Author(s):  
Béatrice Desvergne ◽  
Liliane Michalik ◽  
Walter Wahli

Our understanding of metabolism is undergoing a dramatic shift. Indeed, the efforts made towards elucidating the mechanisms controlling the major regulatory pathways are now being rewarded. At the molecular level, the crucial role of transcription factors is particularly well-illustrated by the link between alterations of their functions and the occurrence of major metabolic diseases. In addition, the possibility of manipulating the ligand-dependent activity of some of these transcription factors makes them attractive as therapeutic targets. The aim of this review is to summarize recent knowledge on the transcriptional control of metabolic homeostasis. We first review data on the transcriptional regulation of the intermediary metabolism, i.e., glucose, amino acid, lipid, and cholesterol metabolism. Then, we analyze how transcription factors integrate signals from various pathways to ensure homeostasis. One example of this coordination is the daily adaptation to the circadian fasting and feeding rhythm. This section also discusses the dysregulations causing the metabolic syndrome, which reveals the intricate nature of glucose and lipid metabolism and the role of the transcription factor PPARγ in orchestrating this association. Finally, we discuss the molecular mechanisms underlying metabolic regulations, which provide new opportunities for treating complex metabolic disorders.


2002 ◽  
Vol 283 (5) ◽  
pp. R1140-R1148 ◽  
Author(s):  
Dan D. Hershko ◽  
Bruce W. Robb ◽  
Guangju Luo ◽  
Per-Olof Hasselgren

Mucosal and enterocyte IL-6 production is increased during sepsis and endotoxemia. Recent studies suggest that cAMP potentiates IL-6 production in endotoxin- or IL-1β-stimulated enterocytes, but the molecular mechanisms are not known. We examined the role of the transcription factors NF-κB, activator protein (AP)-1, CCAAT/enhancer binding protein (C/EBP), and cAMP response element-binding protein (CREB) in cAMP-induced IL-6 production in cultured Caco-2 cells, a human intestinal epithelial cell line. In addition, the role of the protein kinase A (PKA), protein kinase C (PKC), and mitogen-activated protein (MAP) kinase signaling pathways was examined. Treatment of the cells with IL-1β increased IL-6 production and activated the IL-6 promoter in cells transfected with a luciferase reporter plasmid containing a wild-type IL-6 promoter. These effects of IL-1β were significantly potentiated by cAMP. When the binding sites for the individual transcription factors in the IL-6 promoter were mutated, results indicated that all four transcription factors may be involved in the cAMP-induced activation of the IL-6 gene. Treatment of the Caco-2 cells with cAMP increased the DNA binding activity of CREB, C/EBP, and AP-1, but not NF-κB. By using specific blockers, evidence was found that both PKA and p38 MAP kinase (but not PKC or p42/44 MAP kinase) may be involved in the cAMP-induced potentiation of IL-6 production. The present results suggest that cAMP activates multiple transcription factors involved in the regulation of the IL-6 gene and that the activation of these transcription factors may at least in part explain why cAMP potentiates IL-6 production in stimulated enterocytes.


2019 ◽  
Author(s):  
Sandrine Ruffel ◽  
Valentin Chaput ◽  
Jonathan Przybyla-Toscano ◽  
Ian Fayos ◽  
Catalina Ibarra ◽  
...  

AbstractIn Arabidopsis thaliana, the High-Affinity Transport System (HATS) for root NO3- uptake depends mainly on four NRT2 transporters, namely NRT2.1, NRT2.2, NRT2.4 and NRT2.5. The HATS is the target of many regulations to coordinate nitrogen (N) acquisition with the N status of the plant and with carbon (C) assimilation through photosynthesis. At the molecular level, C and N signaling pathways have been shown to control gene expression of the NRT2 transporters. Although several regulators of these transporters have been identified in response to either N or C signals, the response of NRT2 genes expression to the interaction of these signals has never been specifically investigated and the underlying molecular mechanisms remain largely unknown. To address this question we used an original systems biology approach to model a regulatory gene network targeting NRT2.1, NRT2.2, NRT2.4 and NRT2.5 in response to N/C signals. Our systems analysis of the data highlighted the potential role of three putative transcription factors, TGA3, MYC1 and bHLH093. Functional analysis of mutants combined with yeast one hybrid experiments confirmed that all 3 transcription factors are regulators of NRT2.4 or NRT2.5 in response to N or C signals.One sentence summaryIdentification of three transcription factors involved in the regulation of NRT2s transporters using a systems biology approach and NRT2.1 as target gene in response to combinations of N/C treatments


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


Sign in / Sign up

Export Citation Format

Share Document