scholarly journals The influence of binder rheological properties on asphalt mixture permanent deformation

2015 ◽  
Vol 10 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Marcin Gajewski ◽  
Dariusz Sybilski ◽  
Wojciech Bańkowski

The main goal of this paper is to propose the performance parameter for binder which is good for quality prediction of asphalt mixture in frame of resistance to permanent deformation (rutting). Additionally, correlation between, proposed by the authors, repeatable shear creep-recovery test carried out on binder and bituminous mixture rutting test is under evaluation. The results are analysed and correlation between the proposed functional parameter and rut depth is shown. Thanks to that it is possible to claim that expensive rutting test procedure can be assisted with simple test carried out in dynamic shear rheometer at the initial mix design procedure.

2019 ◽  
Vol 9 (2) ◽  
pp. 131-138
Author(s):  
Hassan Divandari

Abstract Rutting occurs due to accumulation of incrementally small permanent deformations from each load application and it can cause irreparable problems in pavements. On the other hand, the Marshall Mix design which is known as the main method in Iran, the lack of a simple test to determine specimen resistance to permanent deformation as the major reason for asphalt rutting is noticeable. Although today many devices are used for rutting measurement, none of them have the ability to use in wider field. In addition, prevalent methods of evaluating rutting potential are usually costly and time consuming. Mentioned parameters illustrate the necessity of developing a simple method, not only having fine precision, but also are able to predict rutting performance with low cost in the short term in laboratory. In this research, after performing the main tests on specimens, IDT test results and Marshall Parameters were used to develop a mathematical model to estimate specimen rut depth. The model is validated by using ANN and makes it possible to evaluate mixtures rutting potential while OBC is being determined in laboratory. So not only is there no need to use expensive instruments of rutting test, but also a remarkable time saving in mix design procedure is achievable.


2012 ◽  
Vol 39 (7) ◽  
pp. 824-833 ◽  
Author(s):  
Sangyum Lee ◽  
Cheolmin Baek ◽  
Je-Jin Park

This paper presents the performance evaluation of unmodified and lime-modified hot mix asphalt (HMA) mixtures at varying asphalt content using asphalt mixture performance test developed from National Cooperative Highway Research Program project 9-19 and 9-29 and the viscoelastic continuum damage finite element analysis. Test methods adopted in this study are the dynamic modulus test for stiffness, the triaxial repeated load permanent deformation test for rutting, and the direct tension test for fatigue cracking. The findings from this study support conventional understanding of the effects of asphalt content and lime modification on the fatigue cracking and rutting performance. Finally, the optimum asphalt content for both lime-modified and unmodified mixtures are proposed based on the knowledge gleaned from the performance-based mix design methodology. With additional validation and calibration, the comprehensive methodology described in this paper may serve as the foundation for a performance-based HMA mix design and performance-related HMA specifications.


Author(s):  
Fisseha Wagaw Maniyazawal

The repetitive traffic loadings that the road experiences during its service life, combined with temperature fluctuations, cause rutting, fatigue and other forms of deteriorations, which ultimately degrade the performance and durability of pavement structures. According to test procedure specified by ASTM D1559 several hot asphalt mixture were prepared, the aggregate blend made by Job mix formula to obtain the percentage of mix material is give Hot-bin one is 26%, Hot-bin two is 23%, and Hot-bin three 51% where hot-bin one is (20-13.2mm), hot-bin two (13.2-5.0mm) and hot-bin three (5.0-0.00mm). The result of Marshall Test on mix design for hot asphalt mixture, for wearing coarse were conclude that the material used for mix design is good, which gives Marshall stability, 12.57 KN with optimum bitumen content of 5.2% (by weight of total aggregate). Hence the quality of aggregate is good but the influence of other factors such as poor drainage courses, level of ground water table, Varity of geological materials along the road rout and poor construction methodology caused the defect. The flow result of the Marshall mix design gives as 3.6 % which is approach of upper limit of specification 4%, So when flow become high in the mix it result long term deterioration of asphalt performance, hence the pavement condition along the study area has been affected by different failure types such as cracks, surface defect and disintegrating from site observation may result of this.


2021 ◽  
Vol 13 (16) ◽  
pp. 9079
Author(s):  
Saverio Olita ◽  
Donato Ciampa

The recycling of road and airport asphalt pavements requires greater reliability of mix design in order to ensure proper rehabilitation and effective reuse of recycled asphalt concrete. Currently, internationally, the most effective mix design procedures for recycled asphalt concrete with RAP (Reclaimed Asphalt Pavement) refer to guidelines developed by SuPerPave<sup>&#xAE;</sup> Mixtures Expert Task Group. In this paper, according to the requirements of the European standard EN 13108, the authors investigated the reliability of the above mix design procedure. In particular, the SuPerPave<sup>&#xAE;</sup> mix design guidelines were applied for dosing components of wearing course layer recycled asphalt mixture and for the determination of PG (Performance Grade) and critical temperatures of binder contained in RAP (RAP binder) and of binder added ex-novo (virgin binder). The experimental research program started from RAM (Reclaimed Aggregate Material) grading characterization and RAP binder content determination. Afterwards, rheological characterization of the RAP binder and selected virgin binder was carried out using the DSR (Dynamic Shear Rheometer) and BBR (Bending Beam Rheometer) devices. This step allowed us to identify the right virgin binder percentages to be added to RAP binder. Then, in compliance with European standards, the mix design study of recycled mixtures was carried out, identifying the necessary granulometric integrations and the virgin-binder-appropriate percentages to be added. In this phase, three different RAP percentages were used: 30%, 40%, and 50%. Finally, the experimental plan was completed with a preliminary mechanical characterization of the studied recycled asphalt mixtures. The results showed that the implemented rational mix design guarantees performance levels of wearing course layer recycled mixtures that are fully in compliance with European standards.


2004 ◽  
Vol 9 ◽  
pp. 57-64
Author(s):  
Osamu TAKAHASHI ◽  
Kazuya MASUI ◽  
Yoshitaka HACHIYA

Author(s):  
Biswajit K. Bairgi ◽  
Md Amanul Hasan ◽  
Rafiqul A. Tarefder

In the asphalt foaming process, the foaming water content (FWC) controls the formation and characteristics of water bubbles. These water bubbles are expected to be expelled from the foamed warm mix asphalt (WMA) during mixing and compaction. However, foaming water may not be completely expelled, rather some of the microbubbles may be trapped in the foamed WMA even after compaction. These microbubbles, or undissipated water, can diffuse over time and cause damage to the foamed WMA. To this end, this study has determined the effects of foaming on the fatigue, moisture damage, and permanent deformation characteristics of foamed WMA. Foamed asphalt and mixtures were designed with varying FWCs and they were tested using linear amplitude sweep, multiple stress creep recovery, four-point flexural beam, and Hamburg wheel tracking tests. Primarily, asphalt foaming dynamics were assessed with a laser-based non-contact method. A simplified viscoelastic continuum damage concept and a three-phase permanent deformation model were used for damage evaluation. The study reveals that foaming softens the binder, which results in slightly higher rutting and moisture susceptibility, though an equivalent or slightly improved fatigue characteristic compared with the regular hot mix asphalt.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2116
Author(s):  
Yue Xiao ◽  
Limin Tang ◽  
Jiawei Xie

There are great uncertainties in road design parameters, and the traditional point numerical calculation results cannot reflect the complexity of the actual project well. Additionally, the calculation method of road design theory based on interval analysis is more difficult in the use of uncertain design parameters. In order to simplify the calculation process of the interval parameters in the road design theory, the asphalt pavement design is taken as the analysis object, and the permanent deformation of the asphalt mixture is simplified by combining the interval analysis theory. Considering the uncertainty of the design parameters, the data with boundaries but uncertain size are expressed in intervals, and then the interval calculation formula for the permanent deformation of the asphalt mixture is derived, and the interval results are obtained. In order to avoid the dependence of interval calculation on the computer code, according to the interval calculation rule, the interval calculation method with the upper and lower end point values as point operations is proposed. In order to overcome the contradiction between interval expansion results and engineering applications, by splitting the multi-interval variable formulas, the interval variable weights are reasonably given, and the synthesis of each single interval result realizes a simplified calculation based on interval variable weight assignment. The analysis results show that the interval calculation method based on the point operation rule is accurate and reliable, and the simplified method based on the interval variable weight assignment is effective and feasible. The simplified interval calculation method proposed in this paper provides a reference for the interval application of road design theory.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4238
Author(s):  
Piotr Pokorski ◽  
Piotr Radziszewski ◽  
Michał Sarnowski

The paper presents the issue of resistance to permanent deformations of bridge pavements placed upon concrete bridge decks. In Europe, bridge asphalt pavement usually consists of a wearing course and a protective layer, which are placed over the insulation (waterproofing). Protective layers of bridge pavement are commonly constructed using low air void content asphalt mixes as this provides the suitable tightness of such layers. Due to increased binder content, asphalt mixes for bridge pavement may have reduced resistance to permanent deformations. The article presents test results of resistance to permanent deformations of asphalt mixes for the protective layers. In order to determine the composition of mixtures with low air void content and resistance to permanent deformation, an experimental design was applied using a new concept of asphalt mix composition. Twenty-seven different asphalt mixture compositions were analyzed. The mixtures varied in terms of binder content, sand content and grit ratio. Resistance to permanent deformation was tested using the laboratory uniaxial cyclic compression method (dynamic load creep). On the basis of experimental results and statistical analysis, the functions of asphalt mixture permanent deformation resistance were established. This enabled a determination of suitable mixture compositions for protective layers for concrete bridge decks.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


2013 ◽  
Vol 40 (2) ◽  
pp. 181-187 ◽  
Author(s):  
Jean-Pascal Bilodeau ◽  
Guy Doré ◽  
Jonas Depatie

The use of recycled asphalt pavement (RAP) aggregates as replacement for new materials in the pavement base weakens the layer in regards to the resistance to permanent deformation under repeated loading. A mechanistic based design procedure is proposed to ensure that base layers containing RAP particles have a similar rutting behaviour to base layers made of virgin aggregates. The design procedure allows calculating an asphalt concrete thickness increase that is based on permanent deformation behaviour of base materials. The calculation approach is based on multistage triaxial permanent deformation tests performed on granular material samples with varied RAP content. The tests allowed proposing an equation that relates permanent strain rate, RAP content, and deviatoric stress, which is the basis of the design procedure. Design charts are proposed to select adequate thickness increase for the asphalt concrete layer according to the expected RAP content in the base layer and asphalt concrete modulus.


Sign in / Sign up

Export Citation Format

Share Document