scholarly journals Analysis of Nanoindentation Test Results of Asphalt Mixture with Different Gradations

2021 ◽  
Vol 11 (17) ◽  
pp. 7992
Author(s):  
Yunhong Yu ◽  
Gang Xu ◽  
Tianling Wang ◽  
Huimin Chen ◽  
Houzhi Wang ◽  
...  

Nanoindentation has been applied in the field of asphalt mixtures, but, at the nano-scale, changes in the composition of the mixture and material properties can have a significant impact on the results. Therefore, it is necessary to investigate the feasibility of nanoindentation tests on different types of asphalt mixtures with different gradations and the influence of material properties and test methods on nanoindentation results. In this paper, the nanoindentation test results on three kinds of asphalt mixture (AC-13, SMA-13, and OGFC-13) with different aggregate gradations were investigated. The load-displacement curves and moduli obtained from the nanoindentation tests were analyzed. In addition, nanoindentation tests were carried out before and after polishing with different ratios of filler and asphalt (RFA) (0.8–1.6). On this basis, the morphology of asphalt specimens with different RFAs is observed by scanning electron microscopy (SEM) imaging. The results indicate that using the nanoindentation test to characterize the mechanical behavior of asphalt mixture, the confidence level of the dense-graded mixture is low, and non-dense-graded mixtures are used as much as possible. Moreover, results illustrate that the nanoindentation modulus tends to increase as the RFA increases. and the SEM chart shows that the higher the mineral powder content in the mastic, the more complex the bitumen and mineral powder interaction surface, confirming the influence of mineral powder content on the nanoindentation test results. Furthermore, the effect of polishing is almost insignificant.

2013 ◽  
Vol 668 ◽  
pp. 292-296
Author(s):  
Ya Li Ye ◽  
Chuan Yi Zhuang ◽  
Jia Bo Hu

With the early asphalt pavements have been into the stage of medium maintenance or overhaul, recycling is a very important way for waste asphalt mixtures. A sample was taken in the expressway from Huhhot to Baotou, and the waste mixtures were extracted from field and sieved; so that the new aggregates can be determined and mix design was carried. With the aid of the penetration, the softening point and the viscosity in 135°C test, the quantity of the regenerant and the asphalt content were ascertained. Through the high temperature stable performance, the anti-low temperature performance, the water stability and the Hamburg wheel-tracking test, the appropriate gradation and the optimum asphalt content were determined. The test results showed that the pavement performance of the waste asphalt mixture was enhanced obviously with hot in-place recycling, and it has achieved technical parameters for old asphalt mixture.


2013 ◽  
Vol 361-363 ◽  
pp. 1629-1634 ◽  
Author(s):  
Guo Xiong Wu ◽  
Xiao Ke Zhang ◽  
Rui Lin Wang

Through a comparative study of high-temperature asphalt mixture performance by three methods: the standard rutting test, uniaxial penetration test on cylindrical specimens, and slant shear test, this paper displays that the shear elastic modulus gained by both cylindrical uniaxial penetration test and slant shear test can reflect well the properties of shear deformation of asphalt mixture under high temperature. However, there are certain limitations in these test methods.


Author(s):  
Jamilla Emi Sudo Lutif Teixeira ◽  
Aecio Guilherme Schumacher ◽  
Patrício Moreira Pires ◽  
Verônica Teixeira Franco Castelo Branco ◽  
Henrique Barbosa Martins

The influence of steel slag expansion level on the early stage performance of hot mix asphalt (HMA) is evaluated. Initially, samples of Linz-Donawitz type steel slag with different levels of expansion (6.71%, 3.16%, 1.33%) were submitted to physical, mechanical, and morphological characterization to assess the effects of expansion on individual material properties. Steel slag was then used as aggregate in HMA to verify the effects of its expansion characteristics on the volumetric and mechanical performance of the asphalt mixture. Four different asphalt mixtures were designed based on Marshall mix design, using asphalt cement (pen. grade 50/70), natural aggregate (granite), and steel slag (in three different levels of expansion). The mechanical characteristics of the asphalt mixture were evaluated based on results from Marshall stability, indirect tensile strength, and resilient modulus testing. A modified Pennsylvania testing method (PTM) was also performed on the studied asphalt mixtures to verify the potential of asphalt binder film to minimize the expansive reactions of steel slag. It was observed that the level of steel slag expansion changes some of the material’s individual properties, which can affect the volumetric parameters of the mix design. The use of steel slag as aggregate in HMA also improves the mechanical properties of non-aged asphalt mixtures. Moreover, the expansive characteristics of this material could be minimized when combined with other asphalt mixture components.


2011 ◽  
Vol 225-226 ◽  
pp. 577-580
Author(s):  
Yong Ye ◽  
Yi Zhou Cai

The objective of this study is to investigate and evaluate the effect of fine aggregates (aggregate size smaller than or equal to 2.36 mm) on the compressive strength and creep behavior of asphalt mixtures. The variables that are considered in the study include the sizes and gradations of fine aggregate. A kind of standant aggregate gradation and four kinds of reduced aggregate gradation mixture specimens are used. Uniaxial compression and static creep tests were realized at different loading conditions. The test results showed that the different fine aggregate sizes do not result in significant differences in compressive strength and creep values using the same percentage of fine aggregates (38.4%). Only the different gradations showed a little differences for mixtures made with different gradations but same aggregate size (between 2.36 and 1.18 mm).


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4910
Author(s):  
Ping Zhang ◽  
Lan Ouyang ◽  
Lvzhen Yang ◽  
Yi Yang ◽  
Guofeng Lu ◽  
...  

As environmentally friendly materials, carbon black and bio-oil can be used as modifiers to effectively enhance the poor high-temperature and low-temperature performance of base asphalt and its mixture. Different carbon black and bio-oil contents and shear time were selected as the test influencing factors in this work. Based on the Box–Behnken design (BBD), carbon black/bio-oil composite modified asphalt was prepared to perform the softening point, penetration, multiple stress creep and recovery (MSCR), and bending beam rheometer (BBR) tests. The response surface method (RSM) was used to analyze the test results. In addition, the base asphalt mixtures and the optimal performance carbon black/bio-oil composite modified asphalt mixtures were formed for rutting and low-temperature splitting tests. The results show that incorporating carbon black can enhance the asphalt’s high-temperature performance by the test results of irrecoverable creep compliance (Jnr) and strain recovery rate (R). By contrast, the stiffness modulus (S) and creep rate (M) test results show that bio-oil can enhance the asphalt’s low-temperature performance. The quadratic function models between the performance indicators of carbon black/bio-oil composite modified asphalt and the test influencing factors were established based on the RSM. The optimal performance modified asphalt mixture’s carbon black and bio-oil content was 15.05% and 9.631%, and the shear time was 62.667 min. It was revealed that the high-temperature stability and low-temperature crack resistance of the carbon black/bio-oil composite modified asphalt mixture were better than that of the base asphalt mixture because of its higher dynamic stability (DS) and toughness. Therefore, carbon black/bio-oil composite modified asphalt mixture can be used as a new type of choice for road construction materials, which is in line with green development.


2018 ◽  
Vol 10 (0) ◽  
pp. 1-9 ◽  
Author(s):  
Lina Šneideraitienė ◽  
Daiva Žilionienė

The two Baltic countries, Lithuania and Latvia, use asphalt mixtures with granite slag that is imported from other countries to install the top layer of asphalt pavement, which is quite expensive. One of the requirements for aggregates used in road construction is mechanical properties. There are some differences between these countries based on national requirements. The article presents test methods for determining the mechanical properties of aggregates. According to them, the mechanical properties of aggregates were tested: resistance to fragmentation, wear, polishing and to wear by abrasion from studded tyre. Tested aggregates were Lithuanian dolomite quarry stone, which was made based on the developed and common technologies as well as imported granite from Ukraine. The analysis and evaluation of the test results have been carried out by the requirements for mineral aggregates of Lithuania and Latvia. Santrauka Dvi Baltijos šalys, Lietuva ir Latvija, asfalto dangos viršutiniam sluoksniui įrengti naudoja asfalto mišinius su granito skalda, kuri importuojama iš kitų šalių, o tai gana brangu. Vienas iš reikalavimų mineralinėms medžiagoms, naudojamoms kelių tiesyboje, yra mechaninės savybės. Jos minėtose šalyse pagal nacionalinius normatyvinius reikalavimus šiek tiek skiriasi. Straipsnyje pateikti mineralinių medžiagų mechaninių savybių nustatymo bandymo metodų aprašai. Pagal juos atlikti skaldų mechaninių savybių bandymai: atsparumas smūgiams, trupinimui, dėvėjimuisi, poliruojamumui (LST EN 1097-8:2009. Bandymai užpildų mechaninėms ir fizikinėms savybėms nustatyti. 8 dalis. Akmens poliruojamumo nustatymas) bei dygliuotoms padangoms. Ištirtos skaldos yra Lietuvos dolomito karjero skalda, pagaminta pagal patobulintą ir įprastą technologijas, bei granito skalda iš Ukrainos. Atlikta gautų bandymų rezultatų analizė bei vertinimas pagal Lietuvos ir Latvijos reikalavimus mineralinėms medžiagoms.


2018 ◽  
Vol 26 (2) ◽  
pp. 24-29 ◽  
Author(s):  
Juraj Šrámek

AbstractThe quality of a road is affected by its correct design, the appropriate use of materials, the effects of the climate, and the technological discipline. The deformation properties and fatigue of asphalt layers are important for the design and assessment of semi-rigid and flexible pavements. The assessment of deformation properties is performed by means of a dynamic impact test and the fatigue life of a particular asphalt mixture. An evaluation of the fatigue life is based on decreases in resistance or increases in deformations in different binders and mixtures. The test methods for the design and control of pavement construction materials determine the basic conditions valid for flexible matter. The Two-Point Bending Test was used for determining the deformation characteristics and the fatigue of asphalt mixtures at the Department of Construction Management in Zilina.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 610 ◽  
Author(s):  
Michał Sarnowski ◽  
Karol Kowalski ◽  
Jan Król ◽  
Piotr Radziszewski

In the course of manufacturing, transport and installation, road bitumens and asphalt mixtures can be exposed to the impact of elevated process temperatures exceeding 240 °C. This mainly applies to the mixtures used for road pavements and bridge deck insulation during adverse weather conditions. The heating process should not change the basic and rheological properties of binders and the asphalt mixtures that to a degree cause the degradation of asphalt pavement durability. The work involved analyzing the properties of non-modified bitumens and SBS polymer modified bitumens, heated at temperatures of 200 °C, 250 °C and 300 °C for 1 h. Next, the asphalt mixtures were heated in the same temperatures. Based on the developed Overheating Degradation Index (ODI) it was demonstrated that polymer-modified bitumens were characterized by higher overheating sensitivity A(ODI) than non-modified bitumens, which was confirmed by mixture test results. Overheating limit temperatures T(ODI) were determined, which in the case of polymer-modified bitumens are up to 20 °C lower than for non-modified bitumens. When the temperature increases above T(ODI), loss of viscoelastic properties occurs in the material which causes, among other effects, a loss of resistance to fatigue cracking.


Author(s):  
Taesoon Park ◽  
Brian J. Coree ◽  
C. W. Lovell

The viability of using pyrolized carbon black (CBp) derived from waste tires as a reinforcing agent in asphalt mixtures was evaluated. Commercial carbon black (CB) has been previously shown to reduce the rutting resistance, temperature susceptibility, and cracking propagation potential of asphalt concrete. It was believed that CBp could produce similar benefits; this belief has been confirmed by this study. Different ratios of CBp and CB (5, 10, 15, and 20 percent by weight of asphalt) were blended with two grades of asphalt (AC-10 and AC-20). The Marshall method, the gyratory testing machine, the dynamic creep testing (confined), the indirect tensile testing, and the resilient modulus test were performed. The test results of CBp mixtures were compared with results of CB and conventional mixtures. The analyses of test results show that the typical performance of CBp-modified asphalt mixtures is improved with respect to commercial CB and conventional mixtures. The rutting potential and the temperature susceptibility can be reduced by the inclusion of CBp in the asphalt mixture. A CBp content of 10 to 15 percent by weight of asphalt is recommended for improvement of asphalt concrete.


2020 ◽  
Vol 5 (2) ◽  
pp. 20 ◽  
Author(s):  
Hilde Soenen ◽  
Stefan Vansteenkiste ◽  
Patricia Kara De Maeijer

Moisture susceptibility is still one of the primary causes of distress in flexible pavements, reducing the pavements’ durability. A very large number of tests are available to evaluate the susceptibility of a binder aggregate combination. Tests can be conducted on the asphalt mixture, either in a loose or compacted form, or on the individual components of an asphalt pavement. Apart from various mechanisms and models, fundamental concepts have been proposed to calculate the thermodynamic tendency of a binder aggregate combination to adhere and/or debond under wet conditions. The aim of this review is to summarize literature findings and conclusions, regarding these concepts as carried out in the CEDR project FunDBits. The applied test methods, the obtained results, and the validation or predictability of these fundamental approaches are discussed.


Sign in / Sign up

Export Citation Format

Share Document