scholarly journals PREDICTING THE LITIGATION OUTCOME OF PPP PROJECT DISPUTES BETWEEN PUBLIC AUTHORITY AND PRIVATE PARTNER USING AN ENSEMBLE MODEL

2021 ◽  
Vol 22 (2) ◽  
pp. 320-345
Author(s):  
Xiaoxiao Zheng ◽  
Yisheng Liu ◽  
Jun Jiang ◽  
Linda M. Thomas ◽  
Nan Su

Apart from the loss of time and money, disputes between public authority and private partner in China’s public-private partnership (PPP) projects are destroying the government’s image of PPP support and the private partner’s investment confidence. This article aims to explore the main causes for PPP disputes, present the results of disputes, and then predict the litigation outcomes. Based on 171 PPP litigation cases from China Judgements Online within 2013–2018, the research identified 17 legal factors and explained how these factors influence the litigation outcomes, which are named as “prediction approach” in this study. Nine machine learning (ML) models were trained and validated using the data from 171 cases. The ensemble model of gradient boosting decision tree (GBDT), k-nearest neighbor (KNN) and multi-layer perceptron neural network (MLP) performed best compared with other nine individual ML models, and obtained a prediction accuracy of 96.42%. This study adds meaningful insights to PPP dispute avoidance, such as high compensation of expected revenues could prevent the government from terminating the contract unilaterally. To some extent, if parties consider the case litigation outcome, they are more likely prefer a rational settlement out of court to avoid further aggravation of the dispute, and would also alleviate the pressure of litigation in China.

2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


Author(s):  
Irfan Ullah Khan ◽  
Nida Aslam ◽  
Malak Aljabri ◽  
Sumayh S. Aljameel ◽  
Mariam Moataz Aly Kamaleldin ◽  
...  

The COVID-19 outbreak is currently one of the biggest challenges facing countries around the world. Millions of people have lost their lives due to COVID-19. Therefore, the accurate early detection and identification of severe COVID-19 cases can reduce the mortality rate and the likelihood of further complications. Machine Learning (ML) and Deep Learning (DL) models have been shown to be effective in the detection and diagnosis of several diseases, including COVID-19. This study used ML algorithms, such as Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and K-Nearest Neighbor (KNN) and DL model (containing six layers with ReLU and output layer with sigmoid activation), to predict the mortality rate in COVID-19 cases. Models were trained using confirmed COVID-19 patients from 146 countries. Comparative analysis was performed among ML and DL models using a reduced feature set. The best results were achieved using the proposed DL model, with an accuracy of 0.97. Experimental results reveal the significance of the proposed model over the baseline study in the literature with the reduced feature set.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1377
Author(s):  
Musaab I. Magzoub ◽  
Raj Kiran ◽  
Saeed Salehi ◽  
Ibnelwaleed A. Hussein ◽  
Mustafa S. Nasser

The traditional way to mitigate loss circulation in drilling operations is to use preventative and curative materials. However, it is difficult to quantify the amount of materials from every possible combination to produce customized rheological properties. In this study, machine learning (ML) is used to develop a framework to identify material composition for loss circulation applications based on the desired rheological characteristics. The relation between the rheological properties and the mud components for polyacrylamide/polyethyleneimine (PAM/PEI)-based mud is assessed experimentally. Four different ML algorithms were implemented to model the rheological data for various mud components at different concentrations and testing conditions. These four algorithms include (a) k-Nearest Neighbor, (b) Random Forest, (c) Gradient Boosting, and (d) AdaBoosting. The Gradient Boosting model showed the highest accuracy (91 and 74% for plastic and apparent viscosity, respectively), which can be further used for hydraulic calculations. Overall, the experimental study presented in this paper, together with the proposed ML-based framework, adds valuable information to the design of PAM/PEI-based mud. The ML models allowed a wide range of rheology assessments for various drilling fluid formulations with a mean accuracy of up to 91%. The case study has shown that with the appropriate combination of materials, reasonable rheological properties could be achieved to prevent loss circulation by managing the equivalent circulating density (ECD).


2021 ◽  
Vol 13 (6) ◽  
pp. 3497
Author(s):  
Hassan Adamu ◽  
Syaheerah Lebai Lutfi ◽  
Nurul Hashimah Ahamed Hassain Malim ◽  
Rohail Hassan ◽  
Assunta Di Vaio ◽  
...  

Sustainable development plays a vital role in information and communication technology. In times of pandemics such as COVID-19, vulnerable people need help to survive. This help includes the distribution of relief packages and materials by the government with the primary objective of lessening the economic and psychological effects on the citizens affected by disasters such as the COVID-19 pandemic. However, there has not been an efficient way to monitor public funds’ accountability and transparency, especially in developing countries such as Nigeria. The understanding of public emotions by the government on distributed palliatives is important as it would indicate the reach and impact of the distribution exercise. Although several studies on English emotion classification have been conducted, these studies are not portable to a wider inclusive Nigerian case. This is because Informal Nigerian English (Pidgin), which Nigerians widely speak, has quite a different vocabulary from Standard English, thus limiting the applicability of the emotion classification of Standard English machine learning models. An Informal Nigerian English (Pidgin English) emotions dataset is constructed, pre-processed, and annotated. The dataset is then used to classify five emotion classes (anger, sadness, joy, fear, and disgust) on the COVID-19 palliatives and relief aid distribution in Nigeria using standard machine learning (ML) algorithms. Six ML algorithms are used in this study, and a comparative analysis of their performance is conducted. The algorithms are Multinomial Naïve Bayes (MNB), Support Vector Machine (SVM), Random Forest (RF), Logistics Regression (LR), K-Nearest Neighbor (KNN), and Decision Tree (DT). The conducted experiments reveal that Support Vector Machine outperforms the remaining classifiers with the highest accuracy of 88%. The “disgust” emotion class surpassed other emotion classes, i.e., sadness, joy, fear, and anger, with the highest number of counts from the classification conducted on the constructed dataset. Additionally, the conducted correlation analysis shows a significant relationship between the emotion classes of “Joy” and “Fear”, which implies that the public is excited about the palliatives’ distribution but afraid of inequality and transparency in the distribution process due to reasons such as corruption. Conclusively, the results from this experiment clearly show that the public emotions on COVID-19 support and relief aid packages’ distribution in Nigeria were not satisfactory, considering that the negative emotions from the public outnumbered the public happiness.


2018 ◽  
Vol 35 (16) ◽  
pp. 2757-2765 ◽  
Author(s):  
Balachandran Manavalan ◽  
Shaherin Basith ◽  
Tae Hwan Shin ◽  
Leyi Wei ◽  
Gwang Lee

AbstractMotivationCardiovascular disease is the primary cause of death globally accounting for approximately 17.7 million deaths per year. One of the stakes linked with cardiovascular diseases and other complications is hypertension. Naturally derived bioactive peptides with antihypertensive activities serve as promising alternatives to pharmaceutical drugs. So far, there is no comprehensive analysis, assessment of diverse features and implementation of various machine-learning (ML) algorithms applied for antihypertensive peptide (AHTP) model construction.ResultsIn this study, we utilized six different ML algorithms, namely, Adaboost, extremely randomized tree (ERT), gradient boosting (GB), k-nearest neighbor, random forest (RF) and support vector machine (SVM) using 51 feature descriptors derived from eight different feature encodings for the prediction of AHTPs. While ERT-based trained models performed consistently better than other algorithms regardless of various feature descriptors, we treated them as baseline predictors, whose predicted probability of AHTPs was further used as input features separately for four different ML-algorithms (ERT, GB, RF and SVM) and developed their corresponding meta-predictors using a two-step feature selection protocol. Subsequently, the integration of four meta-predictors through an ensemble learning approach improved the balanced prediction performance and model robustness on the independent dataset. Upon comparison with existing methods, mAHTPred showed superior performance with an overall improvement of approximately 6–7% in both benchmarking and independent datasets.Availability and implementationThe user-friendly online prediction tool, mAHTPred is freely accessible at http://thegleelab.org/mAHTPred.Supplementary informationSupplementary data are available at Bioinformatics online.


2020 ◽  
Vol 9 (4) ◽  
pp. 1620-1630
Author(s):  
Edi Sutoyo ◽  
Ahmad Almaarif

Indonesia has a capital city which is one of the many big cities in the world called Jakarta. Jakarta's role in the dynamics that occur in Indonesia is very central because it functions as a political and government center, and is a business and economic center that drives the economy. Recently the discourse of the government to relocate the capital city has invited various reactions from the community. Therefore, in this study, sentiment analysis of the relocation of the capital city was carried out. The analysis was performed by doing a classification to describe the public sentiment sourced from twitter data, the data is classified into 2 classes, namely positive and negative sentiments. The algorithms used in this study include Naïve Bayes classifier, logistic regression, support vector machine, and K-nearest neighbor. The results of the performance evaluation algorithm showed that support vector machine outperformed as compared to 3 algorithms with the results of Accuracy, Precision, Recall, and F-measure are 97.72%, 96.01%, 99.18%, and 97.57%, respectively. Sentiment analysis of the discourse of relocation of the capital city is expected to provide an overview to the government of public opinion from the point of view of data coming from social media. 


Author(s):  
Diana Rahmawati ◽  
Mutiara Puspa Putri I ◽  
Miftachul Ulum ◽  
Koko Joni

Bacteria are a group of living things or organisms that do not have a core covering. In the grouping, some bacteria are pathogenic. With a microscopic size, many pathogenic bacteria are found around and spread through the food eaten or by touching objects around them, then cause diseases such as diarrhea, vomiting, and others. As a more effective effort to help the government and society prevent disease caused by pathogenic bacteria, a system for the identification and classification of pathogenic bacteria K-Nearest Neighbor was created. This system uses a biological microscope that is attached to a webcam camera above the ocular lens as a tool to see bacterial objects and assist in bacterial capture. Rough player rotates automatically (auto-focus) in image capture. In the process of classification and identifying bacteria, the K-Nearest Neighbor method is used, which is a method with the calculation of the nearest neighbor or calculation based on the level of similarity to the dataset. In this study, the bacteria vibrio chlorae, staphylococcus aereus, and streptococcus m. with the highest accuracy is the K = 9 value of 97.77% using the Chebyshev method.


Author(s):  
Farid Fitriyadi ◽  
Muqorobin Muqorobin

Abstract—Corona Virus is currently spreading very rapidly in many parts of Indonesia, including Central Java Province. According to the current data of corona database in Central Java, today on 17th of August 2021, the number of confirmed cases is; Confirmed in Treatment (Active Cases): 16.344, Confirmed Recovered: 408.697, and Confirmed Dead: 29.148. Therefore, the total number of cases is 454.189, obtained from the sum of the number of being treated, recovered, and dead. Corona Virus is a collection of viruses that can infect the respiratory system, generally mild, such as common cold, although, some forms of diseases like; SARS, MERS, and COVID-19 are more deadly. In anticipating this case, the government has created some policies which include; limiting activities outside the house, having school activities done from home, working from home, and even having religious activities done from home too. The purpose of this study was to predict the possible rate of new cases in one of Central Java areas with confirmed cases of corona virus. Thus, it can be used as information material for the public to anticipate early. The research method applied in this research is problem analysis and literature study, data collection and implementation. The application of the K-Nearest Neighbor (KNN) method is expected to be able to predict the level of spread of COVID-19 in Central Java. The results of the research on testing the prediction system for the new cases level were tested in the Sragen area. Testing is carried out by taking samples for new cases, namely Kudu Regency/City, Confirmed: 17,599, Treated: 89, Recovered: 18,303, Died: 1,721, Suspected: 87 and Discarded Suspected: 1,711. After doing the prediction with K-NN algorithm, it showed the Condition: High.


2013 ◽  
Vol 45 (4-5) ◽  
pp. 589-602 ◽  
Author(s):  
Mahmood Akbari ◽  
Abbas Afshar

Regardless of extensive researches on hydrologic forecasting models, the issue of updating the outputs from forecasting models has remained a main challenge. Most of the existing output updating methods are mainly based on the presence of persistence in the errors. This paper presents an alternative approach to updating the outputs from forecasting models in order to produce more accurate forecast results. The approach uses the concept of the similarity in errors for error prediction. The K nearest neighbor (KNN) algorithm is employed as a similarity-based error prediction model and improvements are made by new data, and two other forms of the KNN are developed in this study. The KNN models are applied for the error prediction of flow forecasting models in two catchments and the updated flows are compared to those of persistence-based methods such as autoregressive (AR) and artificial neural network (ANN) models. The results show that the similarity-based error prediction models can be recognized as an efficient alternative for real-time inflow forecasting, especially where the persistence in the error series of flow forecasting model is relatively low.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 709
Author(s):  
Ivan Dimitrov ◽  
Nevena Zaharieva ◽  
Irini Doytchinova

The identification of protective immunogens is the most important and vigorous initial step in the long-lasting and expensive process of vaccine design and development. Machine learning (ML) methods are very effective in data mining and in the analysis of big data such as microbial proteomes. They are able to significantly reduce the experimental work for discovering novel vaccine candidates. Here, we applied six supervised ML methods (partial least squares-based discriminant analysis, k nearest neighbor (kNN), random forest (RF), support vector machine (SVM), random subspace method (RSM), and extreme gradient boosting) on a set of 317 known bacterial immunogens and 317 bacterial non-immunogens and derived models for immunogenicity prediction. The models were validated by internal cross-validation in 10 groups from the training set and by the external test set. All of them showed good predictive ability, but the xgboost model displays the most prominent ability to identify immunogens by recognizing 84% of the known immunogens in the test set. The combined RSM-kNN model was the best in the recognition of non-immunogens, identifying 92% of them in the test set. The three best performing ML models (xgboost, RSM-kNN, and RF) were implemented in the new version of the server VaxiJen, and the prediction of bacterial immunogens is now based on majority voting.


Sign in / Sign up

Export Citation Format

Share Document