Bacillus cereus in Acrylic Coated Membrane as Concrete Crack Repair Agent for Self-Healing Process

Author(s):  
Agus Kurniawan ◽  
Iman Haryanto ◽  
Heru Budi Utomo
2021 ◽  
Vol 13 (8) ◽  
pp. 4287
Author(s):  
John Milan van der Bergh ◽  
Bojan Miljević ◽  
Snežana Vučetić ◽  
Olja Šovljanski ◽  
Siniša Markov ◽  
...  

Reinforced concrete crack repair and maintenance costs are around 84% to 125% higher than construction costs, which emphasises the need to increase the infrastructure service life. Prolongation of the designed service life of concrete structures can have significant economic and ecological benefits by minimising the maintenance actions and related increase of carbon and energy expenditure, making it more sustainable. Different mechanisms such as diffusion, permeation and capillary action are responsible for the transport of fluids inside the concrete, which can impact on the structure service life. This paper presents data on microbially induced repair and self-healing solutions for cementitious materials available in the contemporary literature and compares results of compressive strength test and capillary water absorption test, which are relevant to their sealing and mechanical characteristics. The results of the repair and self-healing solutions (relative to unassisted recovery processes) were “normalized.” Externally applied bacteria-based solutions can improve the compressive strength of cementitious materials from 13% to 27%. The internal solution based solely on bacterial suspension had 19% improvement efficacy. Results also show that “hybrid” solutions, based on both bio-based and non-bio-based components, whether externally or internally applied, have the potential for best repair results, synergistically combining their benefits.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4099 ◽  
Author(s):  
How-Ji Chen ◽  
Ching-Fang Peng ◽  
Chao-Wei Tang ◽  
Yi-Tien Chen

At present, the commonly used repair materials for concrete cracks mainly include epoxy systems and acrylic resins, which are all environmentally unfriendly materials, and the difference in drying shrinkage and thermal expansion often causes delamination or cracking between the original concrete matrix and the repair material. This study aimed to explore the feasibility of using microbial techniques to repair concrete cracks. The bacteria used were environmentally friendly Bacillus pasteurii. In particular, the use of lightweight aggregates as bacterial carriers in concrete can increase the chance of bacterial survival. Once the external environment meets the growth conditions of the bacteria, the vitality of the strain can be restored. Such a system can greatly improve the feasibility and success rate of bacterial mineralization in concrete. The test project included the microscopic testing of concrete crack repair, mainly to understand the crack repair effect of lightweight aggregate concrete with implanted bacterial strains, and an XRD test to confirm that the repair material was produced by the bacteria. The results show that the implanted bacterial strains can undergo Microbiologically Induced Calcium Carbonate Precipitation (MICP) and can effectively fill the cracks caused by external concrete forces by calcium carbonate deposition. According to the results on the crack profile and crack thickness, the calcium carbonate precipitate produced by the action of Bacillus pasteurii is formed by the interface between the aggregate and the cement paste, and it spreads over the entire fracture surface and then accumulates to a certain thickness to form a crack repairing effect. The analysis results of the XRD test also clearly confirm that the white crystal formed in the concrete crack is calcium carbonate. From the above test results, it is indeed feasible to use Bacillus pasteurii in the self-healing of concrete cracks.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiahui He ◽  
Zixi Zhang ◽  
Yutong Yang ◽  
Fenggang Ren ◽  
Jipeng Li ◽  
...  

AbstractEndoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) are well-established therapeutics for gastrointestinal neoplasias, but complications after EMR/ESD, including bleeding and perforation, result in additional treatment morbidity and even threaten the lives of patients. Thus, designing biomaterials to treat gastric bleeding and wound healing after endoscopic treatment is highly desired and remains a challenge. Herein, a series of injectable pH-responsive self-healing adhesive hydrogels based on acryloyl-6-aminocaproic acid (AA) and AA-g-N-hydroxysuccinimide (AA-NHS) were developed, and their great potential as endoscopic sprayable bioadhesive materials to efficiently stop hemorrhage and promote the wound healing process was further demonstrated in a swine gastric hemorrhage/wound model. The hydrogels showed a suitable gelation time, an autonomous and efficient self-healing capacity, hemostatic properties, and good biocompatibility. With the introduction of AA-NHS as a micro-cross-linker, the hydrogels exhibited enhanced adhesive strength. A swine gastric hemorrhage in vivo model demonstrated that the hydrogels showed good hemostatic performance by stopping acute arterial bleeding and preventing delayed bleeding. A gastric wound model indicated that the hydrogels showed excellent treatment effects with significantly enhanced wound healing with type I collagen deposition, α-SMA expression, and blood vessel formation. These injectable self-healing adhesive hydrogels exhibited great potential to treat gastric wounds after endoscopic treatment.


2018 ◽  
Vol 1 (1) ◽  
pp. 38 ◽  
Author(s):  
J J Ekaputri ◽  
M S Anam ◽  
Y Luan ◽  
C Fujiyama ◽  
N Chijiwa ◽  
...  

Cracks are caused by many factors. Shrinkage and external loading are the most common reason. It becomes a problem when the ingression of aggressive and harmful substance penetrates to the concrete gap. This problem reduces the durability of the structures. It is well known that self – healing of cracks significantly improves the durability of the concrete structure. This paper presents self-healing cracks of cement paste containing bentonite associated with ground granulated blast furnace slag. The self-healing properties were evaluated with four parameters: crack width on the surface, crack depth, tensile strength recovery, and flexural recovery. In combination with microscopic observation, a healing process over time is also performed. The results show that bentonite improves the healing properties, in terms of surface crack width and crack depth. On the other hand, GGBFS could also improve the healing process, in terms of crack depth, direst tensile recovery, and flexural stiffness recovery. Carbonation reaction is believed as the main mechanism, which contributes the self-healing process as well as the continuous hydration progress.


2019 ◽  
Vol 1 (1) ◽  
pp. 002-011

Oxygen is the essential element required for proper physiological function of cells, tissues and organs within healthy human body. Thanks to its intricate structure, the skin provides a multiprotective barrier against traumatic and non-traumatic injuries, but also a complex and successful self-healing process of the affected tissue. In the particular case of chronic skin wounds, such as diabetic foot ulcer wounds, there is an immediate demand to develop alternative procedures that prevent infection, speed up healing and eliminate any disrupting factor that may interfere with the therapeutic process. Given the importance of oxygen during wound healing cascade, impressive attention was oriented towards the fabrication of oxygen-releasing wound dressings.


2015 ◽  
Vol 245 ◽  
pp. 89-96 ◽  
Author(s):  
Andrey S. Gnedenkov ◽  
Sergey L. Sinebryukhov ◽  
Dmitry V. Mashtalyar ◽  
Sergey V. Gnedenkov

The way of self-healing coating formation at the surface of magnesium alloys by means of plasma electrolytic oxidation method (PEO) with subsequent filling of the obtained layer with inhibitor has been suggested. The electrochemical properties of such coatings have been described in details. The obtained experimental results indicate that the protective properties of the samples with inhibitor-containing coating were increased (IC = 8.6×10–8 A/cm2) in comparison with the samples without coating (5.3×10–5 A/cm2) and the base coating obtained by plasma electrolytic oxidation method (PEO) (3.4×10–7 A/cm2). The local scanning electrochemical methods of surface investigation, notably Scanning Vibrating Electrode Technique (SVET) and Scanning Ion-Selective Electrode Technique (SIET) were used for determining the kinetics and mechanism of the self-healing process. The treatment by the solution containing 8-hydroxyquinoline, which inhibits the corrosion process, enables one to increase the protective properties of the composite coating in 30 times in the corrosion-active environment in comparison with the base PEO-coating and avert the intensive destruction of the material.


Author(s):  
Vinay Kumar ◽  
Rupinder Singh ◽  
Inderpreet Singh Ahuja

Construction is the part of human activity which is directly linked to urbanization for moving ahead on the path of growth and prosperity. Construction activities in past centuries are now part of our precious heritage. The repair and maintenance of heritage structures are of great importance for present-day researchers. One of the most common damage these century-long constructions faces are in form of surface cracks. In the present study, investigations were performed for a 3D printing-based customized solution for crack repair and maintenance of heritage structures. In this study, polyvinylidene fluoride (PVDF) polymer was reinforced with graphene (Gr) and Mn-doped ZnO nano-particles to prepare a smart composite material for crack repair and restoration. The composite was successfully 3D printed on fused deposition modeling (FDM) based 3D printer after investigating its rheological, thermal, and mechanical properties. The in-house developed composite was tested for smart characteristics to use as a programmable solution for filling cracks. The piezoelectric property and dielectric constant of 3D printed disk-shaped composite (PVDF-Gr-Mn-ZnO) were obtained after DC poling (to be used as stimulus) of the functional prototype. The results of the study suggest that the electro-active nature, volumetric change, and charge storing capacity of the additively manufactured composite may be used practically to acquire the shape of cavity/crack present in the constructed wall and repair the damages that occurred in a heritage site. The photoluminescence (PLS) and atomic force microscopy (AFM) analysis was used to ascertain the properties of the prepared composite. Also, the results obtained from the morphological analysis are reported to support the outcomes of the research.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 114 ◽  
Author(s):  
Simone Ciarella ◽  
Wouter Ellenbroek

Vitrimers are covalent network materials, comparable in structure to classical thermosets. Unlike normal thermosets, they possess a chemical bond swap mechanism that makes their structure dynamic and suitable for activated welding and even autonomous self-healing. The central question in designing such materials is the trade-off between autonomy and material stability: the swap mechanism facilitates the healing, but it also facilitates creep, which makes the perfectly stable self-healing solid a hard goal to reach. Here, we address this question for the case of self-healing vitrimers made from star polymers. Using coarse-grained molecular dynamics simulations, we studied the adhesion of two vitrimer samples and found that they bond together on timescales that are much shorter than the stress relaxation time. We showed that the swap mechanism allows the star polymers to diffuse through the material through coordinated swap events, but the healing process is much faster and does not depend on this mobility.


Sign in / Sign up

Export Citation Format

Share Document