scholarly journals Network pharmacology approach to evaluate the therapeutic effects of mulberry leaf components for obesity

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Guidan Wang ◽  
Jine Dong
2019 ◽  
Vol 22 (6) ◽  
pp. 411-420 ◽  
Author(s):  
Xian-Jun Wu ◽  
Xin-Bin Zhou ◽  
Chen Chen ◽  
Wei Mao

Aim and Objective: Cardiovascular disease is a serious threat to human health because of its high mortality and morbidity rates. At present, there is no effective treatment. In Southeast Asia, traditional Chinese medicine is widely used in the treatment of cardiovascular diseases. Quercetin is a flavonoid extract of Ginkgo biloba leaves. Basic experiments and clinical studies have shown that quercetin has a significant effect on the treatment of cardiovascular diseases. However, its precise mechanism is still unclear. Therefore, it is necessary to exploit the network pharmacological potential effects of quercetin on cardiovascular disease. Materials and Methods: In the present study, a novel network pharmacology strategy based on pharmacokinetic filtering, target fishing, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, compound-target-pathway network structured was performed to explore the anti- cardiovascular disease mechanism of quercetin. Results:: The outcomes showed that quercetin possesses favorable pharmacokinetic profiles, which have interactions with 47 cardiovascular disease-related targets and 12 KEGG signaling pathways to provide potential synergistic therapeutic effects. Following the construction of Compound-Target-Pathway (C-T-P) network, and the network topological feature calculation, we obtained top 10 core genes in this network which were AKT1, IL1B, TNF, IL6, JUN, CCL2, FOS, VEGFA, CXCL8, and ICAM1. KEGG pathway enrichment analysis. These indicated that quercetin produced the therapeutic effects against cardiovascular disease by systemically and holistically regulating many signaling pathways, including Fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway and PI3K-Akt signaling pathway.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jiye Chen ◽  
Yongjian Zhang ◽  
Yongcheng Wang ◽  
Ping Jiang ◽  
Guofeng Zhou ◽  
...  

Abstract Background Guizhi decoction (GZD), a classical Chinese herbal formula, has been widely used to treat hypertension, but its underlying mechanisms remain elusive. The present study aimed to explore the potential mechanisms and therapeutic effects of GZD on hypertension by integrating network pharmacology and experimental validation. Methods The active ingredients and corresponding targets were collected from the Traditional Chinese Medicine Systems Pharmacology database and Analysis Platform (TCMSP). The targets related to hypertension were identified from the CTD, GeneCards, OMIM and Drugbank databases. Multiple networks were constructed to identify the key compounds, hub targets, and main biological processes and pathways of GZD against hypertension. The Surflex-Dock software was used to validate the binding affinity between key targets and their corresponding active compounds. The Dahl salt-sensitive rat model was used to evaluate the therapeutic effects of GZD against hypertension. Results A total of 112 active ingredients, 222 targets of GZD and 341 hypertension-related targets were obtained. Furthermore, 56 overlapping targets were identified, five of which were determined as the hub targets for experimental verification, including interleukin 6 (IL-6), C–C motif chemokine 2 (CCL2), IL-1β, matrix metalloproteinase 2 (MMP-2), and MMP-9. Pathway enrichment analysis results indicated that 56 overlapping targets were mainly enriched in several inflammation pathways such as the tumor necrosis factor (TNF) signaling pathway, Toll-like receptor (TLR) signaling pathway and nuclear factor kappa-B (NF-κB) signaling pathway. Molecular docking confirmed that most active compounds of GZD could bind tightly to the key targets. Experimental studies revealed that the administration of GZD improved blood pressure, reduced the area of cardiac fibrosis, and inhibited the expression of IL-6, CCL2, IL-1β, MMP-2 and MMP-9 in rats. Conclusion The potential mechanisms and therapeutic effects of GZD on hypertension may be attributed to the regulation of cardiac inflammation and fibrosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yijia Zeng ◽  
Tingna Li ◽  
Xiaorui Zhang ◽  
Yuanyuan Ren ◽  
Qinwan Huang ◽  
...  

Objective. Modern research shows that Haima Duobian pill (HDP) can relieve the kidney yang deficiency syndrome (KYDS), but the mechanism is still unclear. The aim of this work was to study the effects of HDP in a rat model of KYDS. Materials and Methods. The network pharmacology methods were used to predict the therapeutic effects of Haima Duobian pill. Adenine was used to establish the rat model of kidney yang deficiency syndrome. The general physical signs of rats were observed after different doses of Haima Duobian pill (HDP) were given. Serum cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone (T), estradiol (E2), and gonadotropin-releasing hormone (GnRH) levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Then, the histopathologic changes and sperm activity were detected. Results. HDP could improve the general signs of kidney yang deficiency syndrome rats. After the rats were treated with HDP, the expression of cGMP and E2 was significantly inhibited and the expression of cAMP and T was significantly increased. The pathological damage of testis, epididymis, and seminal vesicle was alleviated, and the sperm activity was improved. Conclusion. For adenine-induced kidney yang deficiency syndrome in rats, HDP had a significant therapeutic effect.


2018 ◽  
Vol 17 (3) ◽  
pp. 582-601 ◽  
Author(s):  
Cheng Zhang ◽  
Ning Wang ◽  
Hor-Yue Tan ◽  
Wei Guo ◽  
Sha Li ◽  
...  

Bearing in mind the doctrine of tumor angiogenesis hypothesized by Folkman several decades ago, the fundamental strategy for alleviating numerous cancer indications may be the strengthening application of notable antiangiogenic therapies to inhibit metastasis-related tumor growth. Under physiological conditions, vascular sprouting is a relatively infrequent event unless when specifically stimulated by pathogenic factors that contribute to the accumulation of angiogenic activators such as the vascular endothelial growth factor (VEGF) family and basic fibroblast growth factor (bFGF). Since VEGFs have been identified as the principal cytokine to initiate angiogenesis in tumor growth, synthetic VEGF-targeting medicines containing bevacizumab and sorafenib have been extensively used, but prominent side effects have concomitantly emerged. Traditional Chinese medicines (TCM)–derived agents with distinctive safety profiles have shown their multitarget curative potential by impairing angiogenic stimulatory signaling pathways directly or eliciting synergistically therapeutic effects with anti-angiogenic drugs mainly targeting VEGF-dependent pathways. This review aims to summarize ( a) the up-to-date understanding of the role of VEGF/VEGFR in correlation with proangiogenic mechanisms in various tissues and cells; ( b) the elaboration of antitumor angiogenesis mechanisms of 4 representative TCMs, including Salvia miltiorrhiza, Curcuma longa, ginsenosides, and Scutellaria baicalensis; and ( c) circumstantial clarification of TCM-driven therapeutic actions of suppressing tumor angiogenesis by targeting VEGF/VEGFRs pathway in recent years, based on network pharmacology.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiao Liang ◽  
Chang-Shun Liu ◽  
Ting Xia ◽  
Qing-Fa Tang ◽  
Xiao-Mei Tan

The decoction is an important dosage form of traditional Chinese medicine (TCM) administration. The Mahuang Fuzi Xixin decoction (MFXD) is widely used to treat allergic rhinitis (AR) in China. However, its active compounds and therapeutic mechanisms are unclear. The aim of this study was to establish an integrative method to identify the bioactive compounds and reveal the mechanisms of action of MFXD. LC-MS/MS was used to identify the compounds in MFXD, followed by screening for oral bioavailability. TCMSP, BindingDB, STRING, DAVID, and KEGG databases and algorithms were used to gather information. Cytoscape was used to visualize the networks. Twenty-four bioactive compounds were identified, and thirty-seven predicted targets of these compounds were associated with AR. DAVID analysis suggested that these compounds exert their therapeutic effects by modulating the Fc epsilon RI, B-cell receptor, Toll-like receptor, TNF, NF-κB, and T-cell receptor signaling pathways. The PI3K/AKT and cAMP signaling pathways were also implicated. Ten of the identified compounds, quercetin, pseudoephedrine, ephedrine, β-asarone, methylephedrine, α-linolenic acid, cathine, ferulic acid, nardosinone, and higenamine, seemed to account for most of the beneficial effects of MFXD in AR. This study showed that LC-MS/MS followed by network pharmacology analysis is useful to elucidate the complex mechanisms of action of TCM formulas.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jihan Huang ◽  
Lei Li ◽  
Fan Cheung ◽  
Ning Wang ◽  
Yunfei Li ◽  
...  

This study aimed to evaluate the clinical analgesic efficacy and identify the molecular targets of XGDP for treating primary dysmenorrhea (PD) by a network pharmacology approach. Analysis of pain disappearance rate of XGDP in PD treatment was conducted based on data from phase II and III randomized, double-blind, double-simulation, and positive parallel controlled clinical trials. The bioactive compounds were obtained by the absorption, distribution, metabolism, and excretion processes with oral bioavailability (OB) and drug-likeness (DL) evaluation. Subsequently, target prediction, pathway identification, and network construction were employed to clarify the mechanisms of the analgesic effect of XGDP on PD. The pain disappearance rates in phase II and III clinical trials of XGDP in PD treatment were 62.5% and 55.8%, respectively, yielding a significant difference (P<0.05) when compared with the control group using Tongjingbao granules (TJBG). Among 331 compounds, 53 compounds in XGDP were identified as the active compounds related to PD through OB, DL, and target prediction. The active compounds and molecular targets of XGDP were identified, and our study showed that XGDP may exert its therapeutic effects on PD through the regulation of the targets related to anti-inflammation analgesia and central analgesia and relieving smooth muscle contraction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Xin Guo ◽  
Yuan Zhang ◽  
Yu-Han Gao ◽  
Si-Ying Deng ◽  
Li-Mei Wang ◽  
...  

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system that is mainly mediated by pathological T-cells. Experimental autoimmune encephalomyelitis (EAE) is a well-known animal model of MS that is used to study the underlying mechanism and offers a theoretical basis for developing a novel therapy for MS. Good therapeutic effects have been observed after the administration of natural compounds and their derivatives as treatments for EAE. However, there has been a severe lag in the research and development of drug mechanisms related to MS. This review examines natural products that have the potential to effectively treat MS. The relevant data were consulted in order to elucidate the regulated mechanisms acting upon EAE by the flavonoids, glycosides, and triterpenoids derived from natural products. In addition, novel technologies such as network pharmacology, molecular docking, and high-throughput screening have been gradually applied in natural product development. The information provided herein can help improve targeting and timeliness for determining the specific mechanisms involved in natural medicine treatment and lay a foundation for further study.


2021 ◽  
pp. 1-11
Author(s):  
Shi Bing Su ◽  
Xiaole Chen ◽  
Peng Wang ◽  
Yunquan Luo ◽  
Yi Yu Lu ◽  
...  

Objective: The aim of this study was to assess the therapeutic effects of Jianpi Liqi decoction (JPLQD) in hepatocellular carcinoma (HCC) and explore its underlying mechanisms. Methods: The characteristics and outcomes of HCC patients with intermediate stage B who underwent sequential conventional transcatheter arterial chemoembolization (cTACE) and radiofrequency ablation (RFA) only or in conjunction with JPLQD were analysed retrospectively. The plasma proteins were screened using label-free quantitative proteomics analysis. The effective mechanisms of JPLQD were predicted through network pharmacology approach and partially verified by ELISA. Results: Clinical research demonstrated that the Karnofsky Performance Status (KPS), traditional Chinese medicine (TCM) syndrome scores, neutropenia and bilirubin, median progression-free survival (PFS), and median overall survival (OS) in HCC patients treated with JPLQD were superior to those in patients not treated with JPLQD (all P<0.05). The analysis of network pharmacology, combined with proteomics, suggested that 52 compounds targeted 80 potential targets, which were involved in the regulation of multiple signaling pathways, especially affecting the apoptosis-related pathways including TNF, p53, PI3K-AKT, and MAPK. Plasma IGFBP3 and CA2 were significantly up-regulated in HCC patients with sequential cTACE and RFA therapy treated with JPLQD than those in patients not treated with JPLQD (P<0.001). The AUC of the IGFBP3 and CA2 panel, estimated using ROC analysis for JPLQD efficacy evaluation, was 0.867. Conclusion: These data suggested that JPLQD improves the quality of life, prolongs the overall survival, protects liver function in HCC patients, and exhibits an anticancer activity against HCC. IGFBP3 and CA2 panels may be potential therapeutic targets and indicators in the efficacy evaluation for JPLQD treatment, and the effective mechanihsms involved in the regulation of multiple signaling pathways, possibly affected the regulation of apoptosis.


2020 ◽  
Author(s):  
Wuxia Quan ◽  
Yandong Miao

Abstract Background: Dilated cardiomyopathy (DCM) is a non-ischaemic cardiac muscle disease with structural and functional myocardial aberration can lead to extensive morbidity and mortality due to complications in particular heart failure and arrhythmia. Two classic Chinese medicine formulas, Shenfu decoction and Linguizhugan decoction, were both shown to exert therapeutic effects on heart disease. Thus, modified Shenfu and Linguizhugan decoction (SFLGZGD) is recommended for treatment DCM. However, its chemical and pharmacological characteristics remain to be elucidated. In the current study, a network pharmacology approach was applied to characterize the action mechanism and target genes of SFLGZGD on DCM.Methods: The gene expression of DCM was obtained from the Gene Expression Omnibus (GEO). All compounds were obtained from the correlative databases, and active mixture were selected according to their oral bioavailability (OB) and drug-likeness (DL) index. The potential targets of SFLGZGD were obtained from the traditional Chinese medicine systems pharmacology (TCMSP) database. The compound-target and target-pathway networks were constructed. The protein-protein interactive (PPI) network generated by R software was visualized by Cytoscape, and the topology scores, functional regions, and gene annotations were analyzed using plugins of Bisogenet and CytoNCA. The potential pathways related to target genes were determined by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses.Results: A total of 963 differentially expressed genes (DEGs), including 538 upregulated genes and 425 downregulated, were obtained from GSE19303. A total of 636 ingredients in SFLGZGD were obtained, among which, 93 were chosen as bioactive components. The compound-target network included 10 bioactive components and 18 potential targets and a total of 1939 genes obtained in the PPI network, among them, a total of 16 genes were screened out. Moreover,129 terms on the GO analysis and six pathways obtained. Among these potential targets, EGFR, CDKN1A, MMP1, COL1A1, COL3A1, MMP3, ICAM1, and HSPB1 were identified as relatively high-degree targets.Conclusions: The network pharmacology-based approach in the current study has shown promising potential in identifying major therapeutic targets from TCM formulations. Besides, our study suggested that network pharmacology prediction may provide a useful tool for describing the molecular mechanism of SFLGZGD on DCM.


2021 ◽  
Author(s):  
Jie-wen Zhao ◽  
Hai-dong Liu ◽  
Ming-yin Man ◽  
Lv-ya Wang ◽  
Ning Li ◽  
...  

Abstract Background Qishen Yiqi Pills (QSYQP) is a traditional Chinese compound recipe. However, our understanding of its mechanism has been hindered due to the complexity of its components and targets. In this work, the network pharmacology-based approaches were used to explore QSYQP’s pharmacological mechanism on treating cardiovascular diseases (CVD). Results From ETCM and TCM MESH databases we collected QSYQP’s 333 active components and their 674 putative targets. We constructed the sub-network influence by CVD genes and found that 40% QSYQP targets appeared in 20 modules, in which QSYQP’s targets and CVD genes co-existed as hub nodes in the sub-network. Functional enrichment analysis suggested that the 42 key targets were mainly expressed in platelets, blood vessels, cardiomyocytes, and other tissues. The main signaling pathways regulated and controlled by the key targets were inflammation, immunity, blood coagulation and energy metabolism. Network and pathway analysis identified 7 key targets, which were regulated by 7 compounds of QSYQP. 26 of the 42 important targets, including the 7 key targets were verified by literature mining. Twelve pairs of interactions between key targets and QSYQP’s compounds were validated by molecular docking. Further validation experiments suggested that QSYQP suppressed H/R induced apoptosis and cytoskeleton disruption of cardiomyocytes. Western blotting showed that the expression of cardiovascular diseases-related genes including ACTC1, FoxO1 and DIAPH1 was significantly decreased by establishing the hypoxia-reoxygenation model in vitro, while the protein expression of experimental group was significantly increased by adding QSYQP or its ingredients. Conclusion These results indicated the correlation of QSYQP treatment to the therapeutic effects of CVD. At the molecular level, this study revealed the multicomponent and multitargeting mechanisms of QSYQP in the regulation and treatment of cardiovascular diseases, potentially providing a reference for the further utilization of QSYQP.


Sign in / Sign up

Export Citation Format

Share Document