A comprehensive post-market review of studies on a probiotic product containing Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011

2011 ◽  
Vol 2 (4) ◽  
pp. 319-334 ◽  
Author(s):  
L. Foster ◽  
T. Tompkins ◽  
W. Dahl

The probiotic preparation Lacidofil® has been commercially available in Europe, Asia and North America since 1995. This product is a combination of two strains, Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011. The strains have been evaluated for safety, identity and mechanisms of probiotic action in vitro, in animal models and human clinical trials. The strains adhered to human epithelial cells, helped to maintain the barrier function and blocked the adhesion of a number of pathogens, allowing them to be cleared from the intestine. The strains also elicited an anti-inflammatory response by down-regulating IL-1β, IL-8 and TNF-α. In various stress models, the probiotic combination facilitated better coping and outcomes which may be through the maintenance of barrier function and suppressing inflammation. Overall, pre-clinical studies suggest a potential anti-infectious role for the strains and the combination. Clinical studies, primarily in children, have identified Lacidofil as an effective supplement for various gastrointestinal diseases such as antibiotic-associated diarrhoea and acute gastroenteritis. Recent research has also indicated that Lacidofil may be beneficial for individuals with atopic dermatitis or vaginal dysbacteriosis.

2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Sabina Fijan ◽  
Anita Frauwallner ◽  
Tomaž Langerholc ◽  
Bojan Krebs ◽  
Jessica A. ter Haar (née Younes) ◽  
...  

The skin and its microbiota serve as physical barriers to prevent invasion of pathogens. Skin damage can be a consequence of illness, surgery, and burns. The most effective wound management strategy is to prevent infections, promote healing, and prevent excess scarring. It is well established that probiotics can aid in skin healing by stimulating the production of immune cells, and they also exhibit antagonistic effects against pathogens via competitive exclusion of pathogens. Our aim was to conduct a review of recent literature on the efficacy of using probiotics against pathogens that cause wound infections. In this integrative review, we searched through the literature published in the international following databases: PubMed, ScienceDirect, Web of Science, and Scopus using the search terms “probiotic” AND “wound infection.” During a comprehensive review and critique of the selected research, fourteen in vitro studies, 8 animal studies, and 19 clinical studies were found. Two of these in vitro studies also included animal studies, yielding a total of 39 articles for inclusion in the review. The most commonly used probiotics for all studies were well-known strains of the species Lactobacillus plantarum, Lactobacillus casei, Lactobacillus acidophilus, and Lactobacillus rhamnosus. All in vitro studies showed successful inhibition of chosen skin or wound pathogens by the selected probiotics. Within the animal studies on mice, rats, and rabbits, probiotics showed strong opportunities for counteracting wound infections. Most clinical studies showed slight or statistically significant lower incidence of surgical site infections, foot ulcer infection, or burn infections for patients using probiotics. Several of these studies also indicated a statistically significant wound healing effect for the probiotic groups. This review indicates that exogenous and oral application of probiotics has shown reduction in wound infections, especially when used as an adjuvant to antibiotic therapy, and therefore the potential use of probiotics in this field remains worthy of further studies, perhaps focused more on typical skin inhabitants as next-generation probiotics with high potential.


2010 ◽  
Vol 78 (11) ◽  
pp. 4734-4743 ◽  
Author(s):  
Simone Guglielmetti ◽  
Valentina Taverniti ◽  
Mario Minuzzo ◽  
Stefania Arioli ◽  
Ivan Zanoni ◽  
...  

ABSTRACT The probiotic approach represents an alternative strategy in the prevention and treatment of infectious diseases, not only at the intestinal level but also at other sites of the body where the microbiota plays a role in the maintenance of physiological homeostasis. In this context, we evaluated in vitro the potential abilities of probiotic and dairy bacteria in controlling Streptococcus pyogenes infections at the pharyngeal level. Initially, we analyzed bacterial adhesion to FaDu hypopharyngeal carcinoma cells and the ability to antagonize S. pyogenes on FaDu cell layers and HaCat keratinocytes. Due to its promising adhesive and antagonistic features, we studied the dairy strain Lactobacillus helveticus MIMLh5, also through in vitro immunological experiments. First, we performed quantification of several cytokines and measurement of NF-κB activation in FaDu cells. MIMLh5 efficiently reduced the induction of interleukin-6 (IL-6), IL-8, and tumor necrosis factor alpha (TNF-α), in a dose-dependent manner. After stimulation of cells with IL-1β, active NF-κB was still markedly lowered. Nevertheless, we observed an increased secretion of IL-6, gamma interferon (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) under these conditions. These effects were associated with the ability of MIMLh5 to enhance the expression of the heat shock protein coding gene hsp70. In addition, MIMLh5 increased the GM-CSF/G-CSF ratio. This is compatible with a switch of the immune response toward a TH1 pathway, as supported by our observation that MIMLh5, once in contact with bone marrow-derived dendritic cells, triggered the secretion of TNF-α and IL-2. In conclusion, we propose MIMLh5 as a potential probiotic bacterium for the human pharynx, with promising antagonistic and immunomodulatory properties.


2006 ◽  
Vol 19 (2) ◽  
pp. 216-226 ◽  
Author(s):  
D. Bosscher ◽  
J. Van Loo ◽  
A. Franck

Health and wellbeing are challenged constantly by pathogens. A number of defence mechanisms exist to protect the body from pathogen colonisation and invasion, with an important role to play for the natural intestinal bacterial flora (mainly by bifidobacteria and lactobacilli). The present paper reviews the evidence on the effects of inulin and oligofructose on colonisation and translocation of pathogens and the prevention of intestinal diseases. In vitro experiments have shown that lactic acid-producing bacteria have antagonistic (antibacterial) activity against pathogens partly because of the production of organic acids which are the endproducts of inulin and oligofructose fermentation. In addition, studies with epithelial layers have shown that inulin and oligofructose inhibit pathogen colonisation and that endproducts of their fermentation have the ability to support barrier function. Furthermore, studies in various animal models have shown that inulin and oligofructose accelerate the recovery of beneficial bacteria, slow down pathogen growth, decreasing pathogen colonisation and systemic translocation. Finally, data from human intervention trials either in patients with intestinal disorders or disease, or prone to critical illness, found that inulin and oligofructose restore the balance when the gut microbial community is altered, inhibit the progression of disease or prevent it from relapsing and/or developing. To conclude, the dietary use of inulin and oligofructose offers a promising approach to restore microbial communities and to support barrier function of the epithelia by their prebiotic action. This may offer the host protection against invasion and translocation of pathogens (endogenous and/or exogenous) and in the prevention of gastrointestinal diseases.


2007 ◽  
Vol 292 (2) ◽  
pp. G590-G598 ◽  
Author(s):  
Michel A. Boivin ◽  
Dongmei Ye ◽  
John C. Kennedy ◽  
Rana Al-Sadi ◽  
Chris Shepela ◽  
...  

A defective intestinal epithelial tight junction (TJ) barrier has been proposed as an important pathogenic factor contributing to the intestinal inflammation of Crohn's disease. Glucocorticoids are first-line therapeutic agents for the treatment of moderate to severe Crohn's disease. Glucocorticoid treatment has been shown to induce retightening of the intestinal TJ barrier defect in Crohn's disease patients. However, the mechanisms that mediate the glucocorticoid therapeutic action on intestinal TJ barrier function remain unknown. The aim of this study was to elucidate the mechanism of glucocorticoid modulation of the intestinal epithelial TJ barrier using an in vitro model system. Filter-grown Caco-2 intestinal epithelial cells were used as an in vitro model to examine the effects of glucocorticoids on basal intestinal epithelial TJ barrier function and on TNF-α-induced disruption of the TJ barrier. Glucocorticoids (prednisolone and dexamethasone) did not have a significant effect on baseline Caco-2 TJ barrier function but prevented the TNF-α-induced increase in Caco-2 TJ permeability. The glucocorticoid protective effect against the TNF-α-induced increase in Caco-2 TJ permeability required activation of the glucocorticoid receptor (GR) complex. The activation of the GR complex resulted in GR complex binding to the glucocorticoid response element (GRE) site on DNA and activation of a GR-responsive promoter. Glucocorticoids inhibited the TNF-α-induced increase in myosin light chain kinase (MLCK) protein expression, a key process mediating the TNF-α increase in intestinal TJ permeability. The glucocorticoid inhibition of the TNF-α-induced increase in MLCK protein expression was due to the binding of the GR complex to a GRE binding site on the MLCK promoter region suppressing the TNF-α-induced activation. Glucocorticoids inhibit the TNF-α-induced increase in Caco-2 TJ permeability. The prednisolone protective action was mediated by binding of activated GR complex to the GRE site on the MLCK promoter, suppressing the TNF-α-induced increase in MLCK gene activity, protein expression, and subsequent opening of the intestinal TJ barrier.


2001 ◽  
Vol 8 (6) ◽  
pp. 1156-1163 ◽  
Author(s):  
G. Umberto Meduri ◽  
Siva Kanangat ◽  
Michael Bronze ◽  
David R. Patterson ◽  
Christopher U. Meduri ◽  
...  

ABSTRACT Clinical studies have shown positive associations among sustained and intense inflammatory responses and the incidence of bacterial infections. Patients presenting with acute respiratory distress syndrome (ARDS) and high levels of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and IL-6, have increased risk for developing nosocomial infections attributable to organisms such as Staphylococcus aureus, Pseudomonas aeruginosa, andAcinetobacter spp., compared to those patients with lower levels. Our previous in vitro studies have demonstrated that these bacterial strains exhibit enhanced growth extracellularly when supplemented with high concentrations of pure recombinant TNF-α, IL-1β, or IL-6. In addition, we have shown that the intracellular milieu of phagocytic cells that are exposed to supraoptimal concentrations of TNF-α, IL-1β, and IL-6 or lipopolysaccharide (LPS) favors survival and replication of ingested bacteria. Therefore, we hypothesized that under conditions of intense inflammation the host's micromilieu favors bacterial infections by exposing phagocytic cells to protracted high levels of inflammatory cytokines. Our clinical studies have shown that methylprednisolone is capable of reducing the levels of TNF-α, IL-1β, and IL-6 in ARDS patients. Hence, we designed a series of in vitro experiments to test whether human monocytic cells (U937 cells) that are activated with high concentrations of LPS, which upregulate the release of proinflammatory cytokines from these phagocytic cells, would effectively kill or restrict bacterial survival and replication after exposure to methylprednisolone. Fresh isolates of S. aureus, P. aeruginosa, and Acinetobacter were used in our studies. Our results indicate that, compared with the control, stimulation of U937 cells with 100-ng/ml, 1.0-μg/ml, 5.0-μg/ml, or 10.0-μg/ml concentrations of LPS enhanced the intracellular survival and replication of all three species of bacteria significantly (for all, P = 0.0001). Stimulation with ≤10.0 ng of LPS generally resulted in efficient killing of the ingested bacteria. Interestingly, when exposed to graded concentrations of methylprednisolone, U937 cells that had been stimulated with 10.0 μg of LPS were able to suppress bacterial replication efficiently in a concentration-dependent manner. Significant reduction in numbers of CFU was observed at ≥150 μg of methylprednisolone per ml (Pvalues were 0.032, 0.008, and 0.009 for S. aureus, P. aeruginosa, and Acinetobacter, respectively). We have also shown that steady-state mRNA levels of TNF-α, IL-1β, and IL-6 in LPS-activated cells were reduced by treatment of such cells with methylprednisolone, in a concentration-dependent manner. The effective dose of methylprednisolone was 175 mg, a value that appeared to be independent of priming level of LPS and type of mRNA. We therefore postulate that a U-shaped relationship exists between the level of expression of TNF-α, IL-1β, and IL-6 within the phagocytic cells and their abilities to suppress active survival and replication of phagocytized bacteria.


2019 ◽  
Vol 8 (1) ◽  
pp. 90 ◽  
Author(s):  
Yi-Hsing Chen ◽  
Wan-Hua Tsai ◽  
Hui-Yu Wu ◽  
Chun-Ya Chen ◽  
Wen-Ling Yeh ◽  
...  

The bacterial species, Helicobacter pylori, is associated with several gastrointestinal diseases, and poses serious health threats owing to its resistance to antibiotics. Lactobacillus spp., on the other hand, possess probiotic activities that have beneficial effects in humans. However, the mechanisms by which Lactobacillus spp. harbor favorable functions and act against H. pylori infection remain to be explored. The aim of this study was to investigate the ability of bacterial strains, Lactobacillus rhamnosus and Lactobacillus acidophilus, termed GMNL-74 and GMNL-185, respectively, to inhibit H. pylori growth and inflammation. Our results showed that GMNL-74 and GMNL-185 possess potent antimicrobial activity against multidrug resistant (MDR)-H. pylori. In addition, an in vitro cell-based model revealed that the inhibition of H. pylori adhesion and invasion of gastric epithelial cells and interleukin-8 production were significantly decreased by treatment with both the Lactobacillus strains. In vivo studies demonstrated that colonization of H. pylori and induced inflammation in the mouse stomach were also alleviated by these Lactobacillus strains. Furthermore, the abundance of beneficial gut bacteria, including Bifidobacterium spp. and Akkermansia muciniphilia, were significantly increased in H. pylori-infected mice treated with GMNL-74 and GMNL-185. These results demonstrate that Lactobacillus spp. ameliorate H. pylori-induced inflammation and supports beneficial gut specific bacteria that act against H. pylori infection.


2020 ◽  
Vol 48 (5-6) ◽  
pp. 252-267 ◽  
Author(s):  
Julia Katharina Metz ◽  
Birgit Wiegand ◽  
Sabrina Schnur ◽  
Katharina Knoth ◽  
Nicole Schneider-Daum ◽  
...  

The incidence of inflammatory lung diseases such as acute respiratory distress syndrome (ARDS) remains an important problem, particularly in the present time with the Covid-19 pandemic. However, an adequate in vitro test system to monitor the barrier function of the alveolar epithelium during inflammation and for assessing anti-inflammatory drugs is urgently needed. Therefore, we treated human Alveolar Epithelial Lentivirus-immortalised cells (hAELVi cells) with the pro-inflammatory cytokines TNF-α (25 ng/ml) and IFN-γ (30 ng/ml), in the presence or absence of hydrocortisone (HC). While TNF-α and IFN-γ are known to reduce epithelial barrier properties, HC could be expected to protect the barrier function and result in an anti-inflammatory effect. We investigated the impact of anti-inflammatory/inflammatory treatment on transepithelial electrical resistance (TEER) and the apparent permeability coefficient (P app) of the low permeability marker sodium fluorescein (NaFlu). After incubating hAELVi cells for 48 hours with a combination of TNF-α and IFN-γ, there was a significant decrease in TEER and a significant increase in the P app. The presence of HC maintained the TEER values and barrier properties, so that no significant P app change was observed. By using hAELVi cells to study anti-inflammatory drugs in vitro, the need for animal experiments could be reduced and pulmonary drug development accelerated.


2012 ◽  
Vol 78 (12) ◽  
pp. 4209-4216 ◽  
Author(s):  
Valentina Taverniti ◽  
Mario Minuzzo ◽  
Stefania Arioli ◽  
Ilkka Junttila ◽  
Sanna Hämäläinen ◽  
...  

ABSTRACTThe use of proper bacterial strains as probiotics for the pharyngeal mucosa is a potential prophylactic strategy for upper respiratory tract infections. In this context, we characterizedin vitrothe functional and immunomodulatory properties of the strainsLactobacillus helveticusMIMLh5 andStreptococcus salivariusST3 that were selected during previous investigations as promising pharyngeal probiotics. In this study, we demonstratedin vitrothat strains MIMLh5 and ST3, alone and in combination, can efficiently adhere to pharyngeal epithelial cells, antagonizeStreptococcus pyogenes, and modulate host innate immunity by inducing potentially protective effects. In particular, we found that the strains MIMLh5 and ST3 activate U937 human macrophages by significantly inducing the expression of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). Nonetheless, the induction of the anti-inflammatory interleukin-10 (IL-10) by MIMLh5 or ST3 was never lower than that of TNF-α, suggesting that these bacteria can potentially exert a regulatory rather than a proinflammatory effect. We also found that the strains MIMLh5 and ST3 induce cyclooxygenase 2 (COX-2) expression and demonstrated that toll-like receptor 2 (TLR-2) participates in the recognition of the strains MIMLh5 and ST3 by U937 cells. Finally, we observed that these microorganisms grow efficiently when cocultured in milk, suggesting that the preparation of a milk-based fermented product containing both MIMLh5 and ST3 can be a practical solution for the administration of these bacteria. In conclusion, we propose the combined use ofL. helveticusMIMLh5 andS. salivariusST3 for the preparation of novel products that display probiotic properties for the pharyngeal mucosa.


2010 ◽  
Vol 77 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Angela Tellez ◽  
Milena Corredig ◽  
Lubov Y Brovko ◽  
Mansel W Griffiths

The objectives of this research were to confirm the effect of compounds derived from milk fermented byLactobacillus helveticus(LH-2) on the nonspecific host defence system, and isolate and characterize the active peptides that mediate the immune response. The cell-free supernatant obtained from the fermented milk and its fractions were testedin vitrofor immuno-modulating activity using murine macrophages (RAW 264·7 cell line). Cytokine production (Interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α), and Interleukin-1β (IL1-β)), nitric oxide (NO) production and phagocytosis were used as biomarkers. Macrophages stimulated with cell-free supernatant of fermented milk showed higher production of cytokines and NO compared with macrophages stimulated with LPS (Lipopolysaccharide) and a commercial immunomodulator derived from β-casein (f54-59). Phagocytosis was observed by macrophages stimulated with the supernatant. Two of nine fractions collected from the supernatant using size exclusion chromatography produced the highest response when used to stimulate macrophages. The results of the dose-response study of the effect of the fraction with the highest stimulation effect on the production of TNF-α showed a direct correlation between protein concentration and TNF-α release. The fraction contained four novel peptides, three derived from the hydrolysis of β-casein and one from the hydrolysis of α-lactalbumin. These results confirm that fermentation of milk byLactobacillus helveticus(LH-2) results in the production of specific peptides capable of modulating macrophage activity.


2012 ◽  
Vol 50 (08) ◽  
Author(s):  
M Gluth ◽  
C Weber ◽  
H Mukai ◽  
D Baumgart ◽  
J Turner ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document