scholarly journals Exploration of cassava clones for the development of biocomposite films

2021 ◽  
Vol 9 (1) ◽  
pp. 85-104
Author(s):  
José Luis Del Rosario-Arellano ◽  
◽  
Gloria Ivette Bolio-López ◽  
Alex Valadez-González ◽  
Luis Zamora-Peredo ◽  
...  

<abstract> <p>Due to the growing interest in developing bioplastic films from renewable sources, the performance of biocomposite films produced of native starch from cassava clones reinforced with cassava bagasse was explored. The biocomposites were prepared from the starch of cassava clones MMEXV5, MMEXV40, and MMEXCH23, reinforced with bagasse at 1%, 5%, and 15%. Their structural, mechanical, and thermal properties were subsequently assessed. When analyzing the starch, differences in the intensities of the Raman spectra exhibit a possible variation in the amylose-amylopectin ratio. In the biocomposites, the bagasse was efficiently incorporated into polymeric matrixes and their thermogravimetric analysis revealed the compatibility of the matrix-reinforcement. The starch films from the MMEXV40 clone showed better tension (2.53 MPa) and elastic modulus (60.49 MPa). The assessed mechanical properties were also affected by bagasse concentration. Because of the above, the MMEXV40 cassava clone showed potential to develop polymeric materials, given its tuberous roots high yield, starch extraction, and good performance in its mechanical properties. At the same time, the starch source (clone) and the bagasse concentration interfere with the final properties of the biocomposites.</p> </abstract>

2020 ◽  
pp. 096739112097118
Author(s):  
Mustafa Taşyürek

In this study, process parameters and mechanical properties of the multi-scale composite were investigated experimentally and predictably. Multi-scale material includes boron carbide particles and multi walled carbon nanotubes (MWCNTs) in the epoxy-based matrix. Both reinforcements were reinforced into the matrix with various rates simultaneously. Average three tensile strength and hardness values were determined. The tensile strength and hardness were enhanced thanks to high rate of B4C usage up to 54.09% and 2.54%, respectively. The microstructure of the hybrid composite was investigated by Scanning Electron Microscopy. Also, Fourier Transform Infrared Spectroscopy was used to interpret spectral bands. The experimental data were analyzed using optimization method. Optimal process parameters for tensile strength and interfacial properties were determined. The Analysis of Variance (ANOVA) was used to obtain most significant factor and optimum levels of parameters. Finally, it was observed that B4C ratio is the most dominant factor affecting the mechanical and thermal properties.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Chern Chiet Eng ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Hidayah Ariffin ◽  
Wan Md. Zin Wan Yunus ◽  
...  

The effects of hydrophilic nanoclay, Nanomer PGV, on mechanical properties of Polylactic Acid (PLA)/Polycaprolactone (PCL) blends were investigated and compared with hydrophobic clay, Montmorillonite K10. The PLA/PCL/clay composites were prepared by melt intercalation technique and the composites were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Dynamic Mechanical Analysis (DMA), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). FTIR spectra indicated that formation of hydrogen bond between hydrophilic clay with the matrix. XRD results show that shifting of basal spacing when clay incorporated into polymer matrix. TEM micrographs reveal the formation of agglomerate in the composites. Based on mechanical properties results, addition of clay Nanomer PGV significantly enhances the flexibility of PLA/PCL blends about 136.26%. TGA showed that the presence of clay improve thermal stability of blends. DMA show the addition of clay increase storage modulus and the presence of clay Nanomer PGV slightly shift two Tg of blends become closer suggest that the presence of clay slightly compatibilizer the PLA/PCL blends. SEM micrographs revealed that presence of Nanomer PGV in blends influence the miscibility of the blends. The PLA/PCL blends become more homogeneous and consist of single phase morphology.


2021 ◽  
Vol 2080 (1) ◽  
pp. 012011
Author(s):  
Di Sheng Lai ◽  
Sinar Arzuria Adnan ◽  
Azlin Fazlina Osman ◽  
Ismail Ibrahim ◽  
Hazrul Haq

Abstract Thermoplastic starch (TPS) was studied extensively to replace conventional plastic in packaging application. In this study, granule corn starch was first plasticized with water and glycerol to form TPS films and two different fillers were incorporated with TPS to form hybrid biocomposite films (TPSB). Two different fillers: Microcrystalline cellulose (MC) and Nano bentonite (NB) fixed at 1: 4 ratios in various loading (1wt%-6wt%) were incorporated in TPS to study effect of hybrid fillers on the mechanical properties of TPSB films. The effect of different loading of MC/NB on TPSB films was investigated through the structural, morphological and mechanical testing. Fourier Transform Infrared Spectroscopy (FTIR) shows TPS matrix and hybrid fillers are highly compatible due to hydroxyl bonding and verified through the shifting of spectra band. Scanning Electron Microscope (SEM) showed even distribution of fillers in the matrix of TPS. The TPSB films exhibited significant improvement 40% in elongation at break compared to pure TPS films. In this study, 5wt% is best loading of the hybrid fillers to incorporated in TPSB films as it achieved the highest value of tensile strength (8.52MPa), Young’s Modulus (42.0 MPa) and elongation at break (116.3%). Generally, previous studies showed flexibility of TPS composite films reduced with incorporating filler, however in this study, the flexibility TPSB show significant improvement compared to previous studies and exhibit promising potential in dry food packaging application.


2021 ◽  
pp. 2188-2196
Author(s):  
Tagreed M. Al-Saadi ◽  
Anaam W. Watan ◽  
Hanaa G. Attiya

This study was achieved to satisfy two goals, the first of which is to treat an environmental problem represented by the disposal of date seeds, and the second is the use of these wastes to improve some mechanical and thermal properties of poly methyl methacrylate PMMA through strengthening different proportions of the powder of date seeds. Particles of date seeds were used as a natural strengthening material for PMMA polymer, by mixing the matrix material (resin) with the hardener while still stirring continuously for a period of 10 min. After that, the samples of the reinforced material were prepared by adding the powder of date seeds, which is the reinforcing substance, with different percentages of weight fraction (0, 0.5, 1, 2, 3, 5 wt. %) and a grain size of <75 µm, while continuing to stir (10 min) for a second time. The composite samples were prepared by the Hand-Lay-up method and cut according to the standard ASTM. Thermal conductivity and some mechanical properties, such as impact strength, tensile strength, compressive strength, flexural strength, and hardness, were studied. An improvement was found in all properties at the reinforcement rate of 1-2 wt. %.


1991 ◽  
Vol 238 ◽  
Author(s):  
L. Xiao ◽  
R. Abbaschian

ABSTRACTThis study explores the relations between processing routes, microstructures and mechanical properties of the matrix/reinforcement interfaces in MoSi2/Nb composites. It was found that the fracture energy of the interfacial region depended on the interfacial bond strength, roughness of interface, and the nature of the interfacial compounds. The fracture energy between the oxide coating and intermetallic interfacial compounds was found to be lower than that between two intermetallics or between Nb and an intermetallic. Processing routes were found to affect the fracture energy of the interfacial region by changing interphase formation, changing microstructure of materials adjacent to the interface, or changing roughness of interface.


2016 ◽  
Vol 51 (11) ◽  
pp. 1619-1629 ◽  
Author(s):  
Cesar A Isaza M ◽  
JE Ledezma Sillas ◽  
JM Meza ◽  
JM Herrera Ramírez

Recently, a new manufacturing process for the production of metallic matrix composite materials reinforced with carbon nanotubes, known as sandwich technique has been proposed. This technique produces a material comprised of a metallic matrix and a banded structures-layers of multi-walled carbon nanotubes. However, among other issues, the matrix-reinforcement interface and the reinforcement dispersion degree are still open questions. The present study uses field emission scanning electron microscopy and high resolution transmission electron microscopy to probe that the method is capable to achieve a good dispersion of the multi-walled carbon nanotubes with no evidence of carbon nanotubes’ damage. The mechanical properties were measured by tensile and nanoindentation tests; improvements in the elastic modulus, yield and ultimate strengths were found, with respect to the unreinforced material.


2018 ◽  
Vol 919 ◽  
pp. 144-151 ◽  
Author(s):  
Ľudmila Dulebová ◽  
Karolina Glogowska ◽  
Jaroslav Hájek ◽  
Jakub Fic

Reinforcing thermoplastic polymers with nanotubes or nanoplatelets to form nanocomposites is a way to increase the usage of polymeric materials in engineering applications by improving their mechanical properties. The contribution presents the results of research from basic processing and mechanical properties of nanocomposites. Low-Density Polyethylene (LDPE) was used as a matrix for experiments. The material LDPE was modified by Halloysite nanotubes (HNT) with a mass share of 2, 4, 6 wt% of the matrix. Nanocomposites were filled with 5 wt% Polyethylene grafted with maleic anhydride (PE-graft-MA) as a compatibilizer. The specimens were prepared by injection molding and their selected mechanical properties were tested by static tensile test, Charpy impact test and Shore hardness test.


2020 ◽  
Vol 1012 ◽  
pp. 57-61
Author(s):  
Hortência Nathânia Silva Câmara ◽  
Francisco Leonardo Gomes de Menezes ◽  
Ricardo Henrique de Lima Leite ◽  
Edna Maria Mendes Aroucha ◽  
Francisco Klebson Gomes dos Santos

The use of natural polymeric materials has been growing notably in order to replace packaging from non-renewable sources. In this sense, cassava starch is a very promising natural polymer for this purpose due to its ease of production, the low cost, besides being biodegradable. However, cassava starch biofilms when dried have a brittle character requiring the addition of a plasticizer. Thus, biofilms were synthesized based on cassava starch (3%) with different percentages of glycerol (5%, 10%, 20%, 40% and 50%) to evaluate changes in physic-chemical and mechanical properties. The results indicate that the increase in percentage of glycerol contributed directly to the increase of water vapor permeability while decreases the contact angle and modulus of elasticity of cassava starch films.


1998 ◽  
Vol 550 ◽  
Author(s):  
Viviane V. Silva ◽  
Rosana Z. Domingues

AbstractThe elaboration of composite materials has been considered one possibility to improve mechanical properties of bioactive phases based on hydroxyapatite used for medical implants. Ceramic and polymeric materials have been tested as the other phase. The aim of this study is to evaluate the sintering behavior and the mechanical properties (compressive strength, modulus of resiliency and microhardness) of hydroxyapatite-zirconia (ZH) composites prepared by precipitation method. Powders of hydroxyapatite-zirconia (ZH) composites, with 40 vol % of zirconia content, and pure hydroxyapatite (HA) as well as pure ZrO2- CaO (ZO) were sintered at 900, 1100 and 1200°C in air at a pressure of 700 MPa for 3 hours, using uniaxial pressing. The products obtained at 1100 and 12000 C are dense, with density values over 91% of the theoretical ones. Experimental results indicated that the sinterization process can be described as admitting a bi-modal structure for ZH composites consisting of a sphere of ZO embedded into a matrix of HA. In this structure the matrix is consider to sinter faster. Intermediate values (between those of pure phases of HA and ZO) of compressive strength and modulus of resiliency were found for ZH composites, suggesting that these composites have potential applications as implant materials.


2020 ◽  
Vol 29 ◽  
pp. 51-60
Author(s):  
Amr Osman ◽  
Abdelmoty Elhakeem ◽  
Saleh Kaytbay ◽  
Abdalla Ahmed

Nowadays, multi-functional materials are strongly needed to meet the requirements of next-generation electronic devices. In this work, two different nanostructured fillers, reduced graphene oxide (RGO) and nanoalumina, were chosen to study their effect on the thermal, electrical and mechanical properties of the prepared epoxy composites at different loadings (0.5 to 2 wt%). RGO was firstly prepared and characterized by XRD, Raman spectroscopy and TEM confirming its production. The results revealed that RGO showed excellent adhesion with the polymer. Whilst, alumina aggregated and debonded from the matrix, as confirmed by SEM images. Hence, at only 2 wt%, RGO/epoxy composites exhibited the highest thermal conductivity (0.391 W/m-K), which was 1.96 times higher than the neat epoxy. Whereas, the alumina/epoxy composites showed lower increment at the same loading (0.206 W/m-K). However, at 2 wt% RGO, electrical percolation networks had been formed across the matrix (DC conductivity = 2×10-7 S/cm). While, epoxy filled with alumina remained insulative at any loading (~ 10-12 S/cm at 100 Hz). Besides, the tensile strength of the composites was improved by 75% and 37% when filled with 0.5 wt% RGO and alumina, respectively. These results are very useful for preparing multi-functional polymeric materials, which are critically required for packaging industries.


Sign in / Sign up

Export Citation Format

Share Document