scholarly journals Effect of indirect interband transitions on terahertz conductivity in “decorated” graphene bilayer heterostructures

2016 ◽  
Vol 55 (4) ◽  
Author(s):  
Victor Ryzhii ◽  
Taiichi Otsuji ◽  
Maxim Ryzhii ◽  
Vladimir Mitin ◽  
Michael S. Shur

We demonstrate that the indirect interband generation of photons in the optically or injection pumped graphene bilayer (GBL) heterostructures with an array of metal particles (GBLs “decorated” by metal particles) with population inversion can surpass their intraband (Drude) absorption. This can result in rather large absolute values of the negative dynamic terahertz (THz) conductivity in a wide range of frequencies at room temperature. This effect enables the creation of novel THz lasers based on the decorated GBLs.

Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


2019 ◽  
Vol 25 (6) ◽  
pp. 693-699 ◽  
Author(s):  
Margarita A. Sazonova ◽  
Anastasia I. Ryzhkova ◽  
Vasily V. Sinyov ◽  
Marina D. Sazonova ◽  
Zukhra B. Khasanova ◽  
...  

Objective: In this review article, we analyzed the literature on the creation of cultures containing mutations associated with cardiovascular diseases (CVD) using transfection, transduction and editing of the human genome. Methods: We described different methods of transfection, transduction and editing of the human genome, used in the literature. Results: We reviewed the researches in which the creation of сell cultures containing mutations was described. According to the literature, system CRISPR/Cas9 proved to be the most preferred method for editing the genome. We found rather promising and interesting a practically undeveloped direction of mitochondria transfection using a gene gun. Such a gun can direct a genetically-engineered construct containing human DNA mutations to the mitochondria using heavy metal particles. However, in human molecular genetics, the transfection method using a gene gun is unfairly forgotten and is almost never used. : Ethical problems arising from editing the human genome were also discussed in our review. We came to a conclusion that it is impossible to stop scientific and technical progress. It is important that the editing of the genome takes place under the strict control of society and does not bear dangerous consequences for humanity. To achieve this, the constant interaction of science with society, culture and business is necessary. Conclusion: he most promising methods for the creation of cell cultures containing mutations linked with cardiovascular diseases, were system CRISPR/Cas9 and the gene gun.


Synlett ◽  
2021 ◽  
Author(s):  
Ao Li ◽  
Bin Pan ◽  
Mu Chao ◽  
Na Wang ◽  
Yu-Long Li ◽  
...  

A visible-light-induced direct α-oxygenation of N-substituted tetrahydroisoquinoline derivatives has been successfully developed. Metalloporphyrin (ZnTPP) has been identified as an effective and inexpensive photocatalyst for this transformation with a wide range of substrates. This protocol provides a convenient route to afford the desired products in moderate to good yields at room temperature under air atmosphere.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinchao Tong ◽  
Fei Suo ◽  
Tianning Zhang ◽  
Zhiming Huang ◽  
Junhao Chu ◽  
...  

AbstractHigh-performance uncooled millimetre and terahertz wave detectors are required as a building block for a wide range of applications. The state-of-the-art technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, and complicated architecture. Here, we report semiconductor surface plasmon enhanced high-performance broadband millimetre and terahertz wave detectors which are based on nanogroove InSb array epitaxially grown on GaAs substrate for room temperature operation. By making a nanogroove array in the grown InSb layer, strong millimetre and terahertz wave surface plasmon polaritons can be generated at the InSb–air interfaces, which results in significant improvement in detecting performance. A noise equivalent power (NEP) of 2.2 × 10−14 W Hz−1/2 or a detectivity (D*) of 2.7 × 1012 cm Hz1/2 W−1 at 1.75 mm (0.171 THz) is achieved at room temperature. By lowering the temperature to the thermoelectric cooling available 200 K, the corresponding NEP and D* of the nanogroove device can be improved to 3.8 × 10−15 W Hz−1/2 and 1.6 × 1013 cm Hz1/2 W−1, respectively. In addition, such a single device can perform broad spectral band detection from 0.9 mm (0.330 THz) to 9.4 mm (0.032 THz). Fast responses of 3.5 µs and 780 ns are achieved at room temperature and 200 K, respectively. Such high-performance millimetre and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing. In addition, the integration of plasmonic semiconductor nanostructures paves a way for realizing high performance and multifunctional long-wavelength optoelectrical devices.


2020 ◽  
Vol 10 (16) ◽  
pp. 5508
Author(s):  
F. Ruiz-Jorge ◽  
J. R. Portela ◽  
J. Sánchez-Oneto ◽  
E. J. Martínez de la Ossa

The use of micro- and nanoparticles is gaining more and more importance because of their wide range of uses and benefits based on their unique mechanical, physical, electrical, optical, electronic, and magnetic properties. In recent decades, supercritical fluid technologies have strongly emerged as an effective alternative to other numerous particle generation processes, mainly thanks to the peculiar properties exhibited by supercritical fluids. Carbon dioxide and water have so far been two of the most commonly used fluids for particle generation, the former being the fluid par excellence in this field, mainly, because it offers the possibility of precipitating thermolabile particles. Nevertheless, the use of high-pressure and -temperature water opens an innovative and very interesting field of study, especially with regards to the precipitation of particles that could hardly be precipitated when CO2 is used, such as metal particles with a considerable value in the market. This review describes an innovative method to obtain micro- and nanoparticles: hydrothermal synthesis by means of near and supercritical water. It also describes the differences between this method and other conventional procedures, the most currently active research centers, the types of particles synthesized, the techniques to evaluate the products obtained, the main operating parameters, the types of reactors, and amongst them, the most significant and the most frequently used, the scaling-up studies under progress, and the milestones to be reached in the coming years.


2015 ◽  
Vol 17 (32) ◽  
pp. 20687-20698 ◽  
Author(s):  
Serena De Santis ◽  
Giancarlo Masci ◽  
Francesco Casciotta ◽  
Ruggero Caminiti ◽  
Eleonora Scarpellini ◽  
...  

Fourteen cholinium-amino acid based room temperature ionic liquids were prepared using a cleaner synthetic method. Chemicophysical properties were well correlated with the wide range of amino acid chemical structures.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 522
Author(s):  
Zhi Yan Lee ◽  
Huzein Fahmi bin Hawari ◽  
Gunawan Witjaksono bin Djaswadi ◽  
Kamarulzaman Kamarudin

A tin oxide (SnO2) and reduced graphene oxide (rGO) hybrid composite gas sensor for high-performance carbon dioxide (CO2) gas detection at room temperature was studied. Since it can be used independently from a heater, it emerges as a promising candidate for reducing the complexity of device circuitry, packaging size, and fabrication cost; furthermore, it favors integration into portable devices with a low energy density battery. In this study, SnO2-rGO was prepared via an in-situ chemical reduction route. Dedicated material characterization techniques including field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were conducted. The gas sensor based on the synthesized hybrid composite was successfully tested over a wide range of carbon dioxide concentrations where it exhibited excellent response magnitudes, good linearity, and low detection limit. The synergistic effect can explain the obtained hybrid gas sensor’s prominent sensing properties between SnO2 and rGO that provide excellent charge transport capability and an abundance of sensing sites.


2005 ◽  
Vol 486-487 ◽  
pp. 530-533 ◽  
Author(s):  
Yamato Hayashi ◽  
Hirotsugu Takizawa ◽  
Yoshitaka Saijo ◽  
Tohru Sekino ◽  
Katsuaki Suganuma ◽  
...  

Applications of silver nano-sized metal particles were investigated for a new, ecologically friendly and economical liquid-solid (silver oxide-alcohol) system. Silver metal oxides as starting materials have merits in metal particles fabrication because these materials are decomposed only by heating in air. That is, noble metal oxide does not use thestrong reduction atmosphere. This reduction is ecologically clean because many noble metal oxides are not toxic, and because O2 is evolved during decomposition. We reduced silver metal oxides by ultrasound and fabricated silver nano metal nanoparticles at room temperature, and various applications were investigated. By choosing a suitable process and conditions, it is reasonable to expect that ultrasonic eco-fabrications can be extended to obtain various silver nano-particles containing materials.


2021 ◽  
Author(s):  
Taeho Kang ◽  
José Manuel González ◽  
Zi-Qi Li ◽  
Klement Foo ◽  
Peter Cheng ◽  
...  

A versatile method to access differentially substituted 1,3- and 1,4-diamines via a nickel-catalyzed three-component 1,2-carboamination of alkenyl amines with aryl/alkenylboronic ester nucleophiles and N–O electrophiles is reported. The reaction proceeds efficiently with free primary and secondary amines without needing a directing auxiliary or protecting group, and is enabled by fine-tuning the leaving group on the N–O reagent. The transformation is highly regioselective and compatible with a wide range of coupling partners and alkenyl amine substrates, all performed at room temperature. A series of kinetic studies support a mechanism in which alkene coordination to the nickel catalyst is turnover-limiting.


Sign in / Sign up

Export Citation Format

Share Document