scholarly journals The effect of microwave pre-treatment of rapeseed on the degradation kinetics of lipophilic bioactive compounds of the oil during storage

2018 ◽  
Vol 69 (1) ◽  
pp. 233 ◽  
Author(s):  
A. Rękas ◽  
A. Siger ◽  
M. Wroniak

This study examined the storage stability of tocochromanols and carotenoids in the oils prepared from microwave pre-treated (MV) rapeseeds (2-10 min, 800W) during storage at 20 °C for 12 months. In line with lipophilic antioxidant degradation throughout the storage period, changes in the antioxidant capacity of the oil were monitored. Microwaving significantly affected the concentration of lipophilic antioxidants in the oil. After 10 min of MV pre-treatment the highest content of total tocochromanols (76.64 mg/100g) was achieved, whereas a maximum carotenoid concentration (861.28 μg/100g) was obtained following 6 min seed MV pre-treatment. The degradation kinetics for the tocochromanols and carotenoids followed a zero-order kinetic model. From the kinetic analysis, it was shown that the degradation rate constant (k) of both tocochromanols and carotenoids decreased with longer seed exposure to MV radiation. The kinetics of antioxidant capacity degradation during the storage of oils followed a zero-order reaction. The rate of antioxidant capacity degradation in the control oil was higher (k=9.1 x 10-2 mmol TEAC/l/month) compared with oils prepared from MV pre-treated seeds (k=6.8-8.0 x 10-2 mmol TEAC/l/month).

Author(s):  
Thamer Abdul Kadir Khalil ◽  
Mazin Ibrahem Al-Zubaidy ◽  
Omer Fawzi Abdulaziz

Kinetics of browning color development, described as browning index (BI), of peach puree subjected to high hydrostatic pressure (HHP) treatments (400, 500, and 600 MPa/1 and 3 min) during 6 weeks of storage at 4 and 20°C were investigated. This research was conducted to modify the use of pressure scale instead of temperature scale in calculating the kinetic parameters of BI values in peach puree samples. The increase in BI values followed the zero-order kinetic model. The highest activation energy (Ea) was experienced with HHP treatment (400, 500, and 600 MPa/3 min) of peach puree samples stored at 4°C.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 662
Author(s):  
Enjie Diao ◽  
Kun Ma ◽  
Hui Zhang ◽  
Peng Xie ◽  
Shiquan Qian ◽  
...  

The thermal stability and degradation kinetics of patulin (PAT, 10 μmol/L) in pH 3.5 of phosphoric-citric acid buffer solutions in the absence and presence of cysteine (CYS, 30 μmol/L) were investigated at temperatures ranging from 90 to 150 °C. The zero-, first-, and second-order models and the Weibull model were used to fit the degradation process of patulin. Both the first-order kinetic model and Weibull model better described the degradation of patulin in the presence of cysteine while it was complexed to simulate them in the absence of cysteine with various models at different temperatures based on the correlation coefficients (R2 > 0.90). At the same reaction time, cysteine and temperature significantly affected the degradation efficiency of patulin in highly acidic conditions (p < 0.01). The rate constants (kT) for patulin degradation with cysteine (0.0036–0.3200 μg/L·min) were far more than those of treatments without cysteine (0.0012–0.1614 μg/L·min), and the activation energy (Ea = 43.89 kJ/mol) was far less than that of treatment without cysteine (61.74 kJ/mol). Increasing temperature could obviously improve the degradation efficiency of patulin, regardless of the presence of cysteine. Thus, both cysteine and high temperature decreased the stability of patulin in highly acidic conditions and improved its degradation efficiency, which could be applied to guide the detoxification of patulin by cysteine in the juice processing industry.


2003 ◽  
Vol 48 (6) ◽  
pp. 141-147
Author(s):  
S. Gutiérrez ◽  
M. Viñas

The most important components of wool scouring effluent grease are esters of sterols. Cholesteryl palmitate (CP) is the main ester in this grease. In this paper, the influence of the ester concentration in the anaerobic digestion and the relative rate of the different degradation steps, are studied. The experiment was carried out to measure methane production in the anaerobic degradation of acetate, palmitic acid (PA) and CP. A first-order kinetic model was assumed for hydrolysis and Monod models were assumed for both the methanogenic and acetogenic steps. Maximum hydrolysis rate was found to be around 20 times faster than the maximum methanogenic reaction rate during the experience. The lanolin emulsion drop size effect was also evaluated employing fine and coarse stock lanolin emulsions and no adapted sludge. Concentrations of 13.7 to 4.6 gCOD.l-1 were employed. In a previous study, the effect of palmitic acid emulsion size was found important when similar sludge was tested. When esters are degraded, a significant effect of drop size on the degradation rate was not found. The difference between CP and PA emulsions behavior could be due to the fact that cholesterol produced during the ester degradation has a protective effect on the sludge.


2004 ◽  
Vol 10 (1) ◽  
pp. 41-44 ◽  
Author(s):  
J. M. Kim ◽  
K. S. Ra ◽  
H. J. Suh

Enzymatic hydrolysis of onion was performed by three different commercial enzyme products (Econase, Rapidase and Viscozyme) for preparation of onion hydrolysates. The hydrolysis yield was determined through the analysis of reducing and total sugar contents in final hydrolysates. Total sugar contents after 2 h-hydrolysis with Econase, Rapidase and Viscozyme were 59.6, 64.1 and 62.2 mg/mL, respectively, and reducing sugar contents of 28.5, 42.7 and 35.9 mg/mL in the same order. According to these results Rapidase was more suitable for the hydrolysis of onion than the other enzymatic products. The effect of temperature on non-enzymatic browning reaction kinetics of the onion hydrolysate was determined. The browning index variation was adequately described by both the first- and the zero-order kinetic. However, the zero-order kinetic model was preferred because its fitting was higher. The values of kinetic constants were 0.081 (60 C), 0.185 (70 C), 0.270 (80 C) and 0.377 (90 C). According to the Arrhenius model, the activation energy for browning index in the range 60–90 C was 21.9 kJ/mol.


2012 ◽  
Vol 8 (3) ◽  
Author(s):  
Xiaoyan Dai ◽  
Chenhuan Yu ◽  
Qiaofeng Wu

Abstract Jiangpo is an increasingly popular East Asian spice which is made from Mangnolia officinalis bark and ginger juice. Since it induces bioactive compounds decomposition and has influence on final flavor and fragrance, cooking is regarded as the key operation in preparation of Jiangpo. To evaluate the bioactive compounds content changes of Jiangpo during thermal processing, kinetic parameters including reaction order, rate constant, T1/2 and activation energy of bioactive markers namely honokiol, magnolol and curcumin were determined. Cooking was set at temperatures 60, 90 and 120 °C for selected time intervals. Results displayed the thermal kinetic characteristics of the three compounds. Thermal degradation of Honokiol and magnolol both followed first order kinetic model and the loss of curcumin fitted second order. A mathematical model based on the obtained kinetic parameters has also been developed to predict the degradation of honokiol, magnolol and curcumin in non-isothermal state. All the information in this paper could contribute necessary information for optimizing the existing heat processing of Jiangpo.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1910
Author(s):  
Dijana Jelić ◽  
Snežana Papović ◽  
Milan Vraneš ◽  
Slobodan Gadžurić ◽  
Silvia Berto ◽  
...  

Ambroxol hydrochloride (AMB), used as a broncho secretolytic and an expectorant drug, is a semi-synthetic derivative of vasicine obtained from the Indian shrub Adhatoda vasica. It is a metabolic product of bromhexine. The paper provides comprehensive and detailed research on ambroxol hydrochloride, gives information on thermal stability, the mechanism of AMB degradation, and data of practical interest for optimization of formulation that contains AMB as an active compound. Investigation on pure AMB and in commercial formulation Flavamed® tablet (FT), which contains AMB as an active compound, was performed systematically using thermal and spectroscopic methods, along with a sophisticated and practical statistical approach. AMB proved to be a heat-stable and humidity-sensitive drug. For its successful formulation, special attention should be addressed to excipients since it was found that polyvinyl pyrrolidone and Mg stearate affect the thermal stability of AMB. At the same time, lactose monohydrate contributes to faster degradation of AMB and change in decomposition mechanism. It was found that the n-th order kinetic model mechanistically best describes the decomposition process of pure AMB and in Flavamed® tablets.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5451
Author(s):  
Sylwia Stegenta-Dąbrowska ◽  
Karolina Sobieraj ◽  
Jacek A. Koziel ◽  
Jerzy Bieniek ◽  
Andrzej Białowiec

Knowledge of kinetic parameters of CO production during biowaste composting is significantly important for the prediction of its course and estimation of total gas quantity. This allows increasing the control of the process, to minimize its negative impact on the environment and to protect the occupational safety of employees exposed to CO in the biowaste composting plant. For the first time, a full study of the influence of temperature and biowaste sterilization on the kinetics of CO production is presented. The lab-scale experiments used a mixture of green waste, dairy cattle manure, and sawdust in two variants: sterilized and non-sterilized samples. The process was carried out in controlled temperature reactors with measuring the concentrations of CO, O2, and CO2 every 12 h.CO production and k value increased with temperature. However, higher CO production was observed in biotic conditions between 10~50 °C, suggesting the biotic CO formation and 1st-order kinetics. The abiotic (thermochemical) process was more efficiently generating CO above 50 °C, described with a 0-order kinetic model. Additionally, the rate constant (k) value of CO production under biotic conditions was increasing up to a temperature of 60 °C, above which a slight decrease in CO production rate was observed at 70 °C. The presented results are the basis for further studies focused on the feasibility of (1) the mitigation and (2) valorization of CO production during the biowaste biostabilization are warranted.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Diya'uddeen Basheer Hasan ◽  
Abdul Aziz Abdul Raman ◽  
Wan Mohd Ashri Wan Daud

The mineralisation kinetics of petroleum refinery effluent (PRE) by Fenton oxidation were evaluated. Within the ambit of the experimental data generated, first-order kinetic model (FKM), generalised lumped kinetic model (GLKM), and generalized kinetic model (GKM) were tested. The obtained apparent kinetic rate constants for the initial oxidation step (k2′), their final oxidation step (k1′), and the direct conversion to endproducts step (k3′) were 10.12, 3.78, and 0.24 min−1for GKM; 0.98, 0.98, and nil min−1for GLKM; and nil, nil, and >0.005 min−1for FKM. The findings showed that GKM is superior in estimating the mineralization kinetics.


Sign in / Sign up

Export Citation Format

Share Document