scholarly journals Thermal Stability and Degradation Kinetics of Patulin in Highly Acidic Conditions: Impact of Cysteine

Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 662
Author(s):  
Enjie Diao ◽  
Kun Ma ◽  
Hui Zhang ◽  
Peng Xie ◽  
Shiquan Qian ◽  
...  

The thermal stability and degradation kinetics of patulin (PAT, 10 μmol/L) in pH 3.5 of phosphoric-citric acid buffer solutions in the absence and presence of cysteine (CYS, 30 μmol/L) were investigated at temperatures ranging from 90 to 150 °C. The zero-, first-, and second-order models and the Weibull model were used to fit the degradation process of patulin. Both the first-order kinetic model and Weibull model better described the degradation of patulin in the presence of cysteine while it was complexed to simulate them in the absence of cysteine with various models at different temperatures based on the correlation coefficients (R2 > 0.90). At the same reaction time, cysteine and temperature significantly affected the degradation efficiency of patulin in highly acidic conditions (p < 0.01). The rate constants (kT) for patulin degradation with cysteine (0.0036–0.3200 μg/L·min) were far more than those of treatments without cysteine (0.0012–0.1614 μg/L·min), and the activation energy (Ea = 43.89 kJ/mol) was far less than that of treatment without cysteine (61.74 kJ/mol). Increasing temperature could obviously improve the degradation efficiency of patulin, regardless of the presence of cysteine. Thus, both cysteine and high temperature decreased the stability of patulin in highly acidic conditions and improved its degradation efficiency, which could be applied to guide the detoxification of patulin by cysteine in the juice processing industry.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1910
Author(s):  
Dijana Jelić ◽  
Snežana Papović ◽  
Milan Vraneš ◽  
Slobodan Gadžurić ◽  
Silvia Berto ◽  
...  

Ambroxol hydrochloride (AMB), used as a broncho secretolytic and an expectorant drug, is a semi-synthetic derivative of vasicine obtained from the Indian shrub Adhatoda vasica. It is a metabolic product of bromhexine. The paper provides comprehensive and detailed research on ambroxol hydrochloride, gives information on thermal stability, the mechanism of AMB degradation, and data of practical interest for optimization of formulation that contains AMB as an active compound. Investigation on pure AMB and in commercial formulation Flavamed® tablet (FT), which contains AMB as an active compound, was performed systematically using thermal and spectroscopic methods, along with a sophisticated and practical statistical approach. AMB proved to be a heat-stable and humidity-sensitive drug. For its successful formulation, special attention should be addressed to excipients since it was found that polyvinyl pyrrolidone and Mg stearate affect the thermal stability of AMB. At the same time, lactose monohydrate contributes to faster degradation of AMB and change in decomposition mechanism. It was found that the n-th order kinetic model mechanistically best describes the decomposition process of pure AMB and in Flavamed® tablets.


Author(s):  
Samira Taherkhani ◽  
Ali Khani

Introduction: In this study, nanosized zero-valent zinc (Zn0) as a reducing agent, simultaneously synthesized and immobilized on an oxidizing agent, ZnO photocatalyst for degradation of methyl orange (MO) from the aqueous solution. Materials and Methods: The prepared redox nanocomposite (nZn0-ZnO) was characterized by the XRD and SEM techniques. The prepared sample was separated by centrifuging. The preparation process of nZn0-ZnO including synthesis-immobilization, washing, and drying carried out under Argon gas flow. Moreover, the effect of temperature and kinetics reaction was studied. Results: The results showed that degradation efficiency of prepared redox nanocomposite was increased compared to each ZnO nanopowder and Zn0 under the same operational condition. The calculated activation energy for the degradation process was 4.05 KJ.mol-1. Finally, the results showed that the degradation processes followed pseudo first order kinetic model in the basic condition by the relative deviation modulus. Conclusion: As compared to ZnO nanopowder and Zn0, the prepared redox nanocomposite showed high degradation efficiency for the removal of methyl orange from the aqueous solution.


2003 ◽  
Vol 48 (6) ◽  
pp. 141-147
Author(s):  
S. Gutiérrez ◽  
M. Viñas

The most important components of wool scouring effluent grease are esters of sterols. Cholesteryl palmitate (CP) is the main ester in this grease. In this paper, the influence of the ester concentration in the anaerobic digestion and the relative rate of the different degradation steps, are studied. The experiment was carried out to measure methane production in the anaerobic degradation of acetate, palmitic acid (PA) and CP. A first-order kinetic model was assumed for hydrolysis and Monod models were assumed for both the methanogenic and acetogenic steps. Maximum hydrolysis rate was found to be around 20 times faster than the maximum methanogenic reaction rate during the experience. The lanolin emulsion drop size effect was also evaluated employing fine and coarse stock lanolin emulsions and no adapted sludge. Concentrations of 13.7 to 4.6 gCOD.l-1 were employed. In a previous study, the effect of palmitic acid emulsion size was found important when similar sludge was tested. When esters are degraded, a significant effect of drop size on the degradation rate was not found. The difference between CP and PA emulsions behavior could be due to the fact that cholesterol produced during the ester degradation has a protective effect on the sludge.


2018 ◽  
Vol 08 (05) ◽  
pp. 1850034 ◽  
Author(s):  
C. L. Wang

In this paper, photocatalytic degradation processes of different materials are fitted to the first-order kinetic model, second-order kinetic model and fractional first-order kinetic model. Deterministic coefficients are calculated for the evaluation of the validity of these models. The fitting results show clearly that the degradation process can fit the fractional first-order kinetic model in a very good manner. In this way, two material parameters can be well defined. One is the degradation time, which can be used to describe the photocatalytic degradation process quantitatively. Another is the order of the derivative, which could be related to the material’s microstructure.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Azam Ghavi ◽  
Ghadamali Bagherian ◽  
Hadi Rezaei-Vahidian

Abstract Background This work studied the performance of UV/PS/TiO2NPs and UV/PI/TiO2NPs as hybrid advanced oxidation processes for degradation of paraquat in aqueous solution, because this very toxic herbicide is used third most widely. Results The effects of several factors such as UV irradiation, initial oxidant concentration, TiO2 nanoparticles dosage, and pH on the degradation efficiency were investigated. The process optimization was performed by the central composite design as a tool of response surface methodology for 30 mgL−1 of the herbicide initial concentration at 25 ℃ and 40 min of degradation process. Based on the results, a degradation efficiency of 77% and 90% were obtained for the UV/PS/TiO2NPs and UV/PI/TiO2NPs processes, respectively, in the optimum conditions. The mineralization efficiency of the paraquat solution using UV/PS/TiO2NPs and UV/PI/TiO2NPs processes are about 32% and 55%, respectively, after 40 min. The kinetic studies show that both processes follow a pseudo-first-order kinetic model, and the kinetic constants are 0.0299 min−1 for the PS process and 0.0604 min−1 for the PI process. The electrical energy consumption was estimated to be about 481.60 kWhm−3 for the PS process and 238.41 kWhm−3 for the PI process. Conclusions The degradation and mineralization efficiency of the paraquat solution using the UV/PI/TiO2NPs process was more than that of the UV/PS/TiO2NPs process at the optimum conditions after 40 min.


2018 ◽  
Vol 69 (1) ◽  
pp. 233 ◽  
Author(s):  
A. Rękas ◽  
A. Siger ◽  
M. Wroniak

This study examined the storage stability of tocochromanols and carotenoids in the oils prepared from microwave pre-treated (MV) rapeseeds (2-10 min, 800W) during storage at 20 °C for 12 months. In line with lipophilic antioxidant degradation throughout the storage period, changes in the antioxidant capacity of the oil were monitored. Microwaving significantly affected the concentration of lipophilic antioxidants in the oil. After 10 min of MV pre-treatment the highest content of total tocochromanols (76.64 mg/100g) was achieved, whereas a maximum carotenoid concentration (861.28 μg/100g) was obtained following 6 min seed MV pre-treatment. The degradation kinetics for the tocochromanols and carotenoids followed a zero-order kinetic model. From the kinetic analysis, it was shown that the degradation rate constant (k) of both tocochromanols and carotenoids decreased with longer seed exposure to MV radiation. The kinetics of antioxidant capacity degradation during the storage of oils followed a zero-order reaction. The rate of antioxidant capacity degradation in the control oil was higher (k=9.1 x 10-2 mmol TEAC/l/month) compared with oils prepared from MV pre-treated seeds (k=6.8-8.0 x 10-2 mmol TEAC/l/month).


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 60 ◽  
Author(s):  
Anastassiya A. Mashentseva ◽  
Murat Barsbay ◽  
Nurgulim A. Aimanova ◽  
Maxim V. Zdorovets

In this study, the use of composite track-etched membranes (TeMs) based on polyethylene terephthalate (PET) and electrolessly deposited silver microtubes (MTs) for the decomposition of toxic phenothiazine cationic dye, methylene blue (MB), under visible light was investigated. The structure and composition of the composite membranes were elucidated by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction technique. Under visible light irradiation, composite membrane with embedded silver MTs (Ag/PET) displayed high photocatalytic efficiency. The effects of various parameters such as initial dye concentration, temperature, and sample exposure time on the photocatalytic degradation process were studied. The decomposition reaction of MB was found to follow the Langmuir–Hinshelwood mechanism and a pseudo-first-order kinetic model. The degradation kinetics of MB accelerated with increasing temperature and activation energy, Ea, was calculated to be 20.6 kJ/mol. The reusability of the catalyst was also investigated for 11 consecutive runs without any activation and regeneration procedures. The Ag/PET composite performed at high degradation efficiency of over 68% after 11 consecutive uses.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1597
Author(s):  
Iman Jafari ◽  
Mohamadreza Shakiba ◽  
Fatemeh Khosravi ◽  
Seeram Ramakrishna ◽  
Ehsan Abasi ◽  
...  

The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2872
Author(s):  
Seyed Mohamad Reza Paran ◽  
Ghasem Naderi ◽  
Elnaz Movahedifar ◽  
Maryam Jouyandeh ◽  
Krzysztof Formela ◽  
...  

The effect of several concentrations of carboxylated nitrile butadiene rubber (XNBR) functionalized halloysite nanotubes (XHNTs) on the vulcanization and degradation kinetics of XNBR/epoxy compounds were evaluated using experimental and theoretical methods. The isothermal vulcanization kinetics were studied at various temperatures by rheometry and differential scanning calorimetry (DSC). The results obtained indicated that the nth order model could not accurately predict the curing performance. However, the autocatalytic approach can be used to estimate the vulcanization reaction mechanism of XNBR/epoxy/XHNTs nanocomposites. The kinetic parameters related to the degradation of XNBR/epoxy/XHNTs nanocomposites were also assessed using thermogravimetric analysis (TGA). TGA measurements suggested that the grafted nanotubes strongly enhanced the thermal stability of the nanocomposite.


Sign in / Sign up

Export Citation Format

Share Document