MODELING AND FABRICATION OF A KINETIC SOLAR ENERGY-ABSORBING WINDOW AS A GREEN IDEA FOR SUSTAINABLE FUTURE BUILDINGS

2018 ◽  
Vol 13 (2) ◽  
pp. 145-162 ◽  
Author(s):  
Masoud Valinejadshoubi ◽  
Mannan Ghanizadehgrayli ◽  
Sahar Heidari

INTRODUCTION Renewable versus nonrenewable energy sources and their respective environmental impacts have emerged as preeminent industrial, as well as environmental concerns. Negotiation between policies that promote economic development with those promoting conservationism has yielded promising opportunities for the future. These opportunities engage frameworks focused on economic directives while simultaneously considering the need for environmental directives. Buildings present a unique opportunity for sustainability as they represent the largest proportion of consumed energy, relative to other consumers reliant on the energy grid system. The largest source of energy expenditure in a modern building is through the heating and cooling system which facilitates and maintains a comfortable living temperature. By effectively implementing innovative approaches focused on energy preservation and overall reduction of consumption, it is possible to meet emission reduction goals and mitigate other adverse environmental conditions. Windows play a vital role in energy consumption and overall maintenance of a comfortable temperature. Understandably, the construction and fabrication of windows are the primary means through which optimized temperatures are achieved. This occurs not only through heat and energy transference but also by providing a protective differential between the inside of the building and the harsh weather conditions of the outdoors. As such, appropriate widow design strategies not only enhance comfort but reduce overall energy consumption. This study seeks to evaluate double-skin windows in order to offer a solution to excessive energy consumption. The windows work by generating a natural ventilation system in summer and then by producing hot air in winter for year-round comfort that is economical. Since current double-skin windows fail to effectively provide ventilation during warm seasons, a kinetic double-skin window was proposed to address this problem and optimize the heating and cooling functions of the building. The results of this research are applicable to modern construction and can be implemented into current design structures.

2018 ◽  
Vol 37 (1) ◽  
pp. 519-543 ◽  
Author(s):  
Aisling Doyle ◽  
Tariq Muneer

With the introduction of electric vehicles in the automobile market, limited information is available on how the battery’s energy consumption is distributed. This paper focuses on the energy consumption of the vehicle when the heating and cooling system is in operation. On average, 18 and 14% for the battery’s energy capacity is allocated to heating and cooling requirements, respectively. The conventional internal combustion engine vehicle uses waste heat from its engine to provide for passenger thermal requirements at no cost to the vehicle’s propulsion energy demands. However, the electric vehicle cannot avail of this luxury to recycle waste heat. In order to reduce the energy consumed by the climate control system, an analysis of the temperature profile of a vehicle’s cabin space under various weather conditions is required. The present study presents a temperature predicting algorithm to predict temperature under various weather conditions. Previous studies have limited consideration to the fluctuation of solar radiation space heating to a vehicle’s cabin space. This model predicts solar space heating with a mean bias error and root mean square error of 0.26 and 0.57°C, respectively. This temperature predicting model can potentially be developed with further research to predict the energy required by the vehicle’s primary lithium-ion battery to heat and cool the vehicle’s cabin space. Thus, this model may be used in a route planning application to reduce range anxiety when drivers undertake a journey under various ambient weather conditions while optimising the energy consumption of the electric vehicle.


Author(s):  
Elise Belleil ◽  
Long Phan ◽  
Cheng-Xian Lin ◽  
Mirko Schäfer ◽  
Johannes Wagner

The solar powered house at the Engineering Center of Florida International University is out of the U.S. Solar Decathlon 2005 competition. A computational simulation using EnergyPlus is conducted to study different ventilation strategies in this solar house model, with consideration of the hot and humid climate in Miami, Florida. Several modes of ventilation including mechanical cooling systems, natural ventilation utilization, and hybrid systems were considered to seek the best possible option for ventilation in such extreme climate. While the need for a mechanical ventilation system is always present, a resort to natural ventilation could significantly reduce energy consumption. As for natural ventilation utilization, a few methods including earth tubes (ET), thermal chimneys (TC), cooling towers (CT), and openings have been simulated and compared with the mechanical cooling system of the original house. However, as the simulation results suggested, relying on only natural ventilation could cause a dramatic impact to the human thermal comfort. Therefore, a coupling strategy between mechanical systems and natural ventilation was extensively investigated in hope for a better solution in terms of both energy consumption and thermal comfort. In fact, the hybrid system has proved to tremendously reduce energy consumption while complying with the minimum requirements for thermal comfort recommended by ASHRAE standards.


Climate ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 125
Author(s):  
Serena Summa ◽  
Luca Tarabelli ◽  
Giulia Ulpiani ◽  
Costanzo Di Perna

Climate change is posing a variety of challenges in the built realm. Among them is the change in future energy consumption and the potential decay of current energy efficient paradigms. Indeed, today’s near-zero Energy buildings (nZEBs) may lose their virtuosity in the near future. The objective of this study is to propose a methodology to evaluate the change in yearly performance between the present situation and future scenarios. Hourly dynamic simulations are performed on a residential nZEB located in Rome, built in compliance with the Italian legislation. We compare the current energy consumption with that expected in 2050, according to the two future projections described in the Fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC). Implications for thermal comfort are further investigated by assuming no heating and cooling system, and by tracking the free-floating operative temperature. Compared to the current weather conditions, the results reveal an average temperature increase of 3.4 °C and 3.9 °C under RCP4.5 and RCP8.5 scenarios, estimated through ERA-Interim/UrbClim. This comes at the expense of a 47.8% and 50.3% increase in terms of cooling energy needs, and a 129.5% and 185.8% decrease in terms of heating needs. The annual power consumption experiences an 18% increase under both scenarios due to (i) protracted activation of the air conditioning system and (ii) enhanced peak power requirements. A 6.2% and 5.1% decrease in the hours of adaptive comfort is determined under the RCP4.5 and RCP8.5′s 2050 scenarios out of the concerted action of temperature and solar gains. The results for a newly proposed combined index for long-term comfort assessments reveal a milder future penalty, owing to less pronounced excursions and milder daily temperature swings.


Author(s):  
Amanie Abdelmessih ◽  
Andre Alvarez ◽  
Joshua Gonzalez ◽  
Timothy Gooch ◽  
Adrian Gutierrez ◽  
...  

Abstract Common quibbles in most homes are the temperature setting. Some family members are comfortable with cooler temperature settings, while other family members prefer warmer temperature settings. Not to mention the fragile elderly and some medical situations require different temperature settings for those individuals than the rest of the occupants of the space. The purpose of this article is to outline a research where we created a working prototype of a portable, effective Peltier cooling/heating system. Peltier, or thermoelectric modules, are devices that use the differences in electric voltages to create a difference in temperature between two flat opposite sides of the thin module. The system can easily be switched between the heating and cooling modes. In contrast to compression refrigeration systems it produces a very low level of noise output. Also, the system is portable, small in size, and light weight. Another advantage of using the Peltier system is it does not employ hazardous substances such as hydrochlorofluorocarbons, but uses water. While a system such as this could be beneficial in the day to day comfort of any individual, it could prove vital to the survival of the elderly and medically vulnerable individuals. This heating/cooling system can enhance the performance of military, particularly in biological warfare suites, and law enforcement personnel who find themselves in less than desirable weather conditions. This uniquely designed Peltier system is compact, and lightweight. Cooling/heating through the system would be achieved by the exchange of heat between the user and a custom designed vest. The system is powered by lithium ion battery pack. Details of this unique design are discussed in the article. Also, the testing and results are reported, and discussed.


2019 ◽  
Vol 111 ◽  
pp. 04011
Author(s):  
Catalin Lungu ◽  
Florin Baltaretu

In this paper the authors describe a HVAC innovative system using an integrated greenhouse for heating and cooling an office building. The ventilation system allows natural (night) or mechanical ventilation and the passive cooling during the summer, including cold storage in the building structure and the PCM plywood and the refrigeration energy use during the day. Natural ventilation occurs when the wind or the Venturi effect, created by the « hat » that supports the photovoltaic panels, is strong enough; otherwise, a variable speed exhaust fan mounted on top of the building is used. The plants inside the greenhouse can produce O2 under certain conditions necessary for refreshing the ventilation air. The environment of the greenhouse allows air humidification naturally, without the use of humidifiers. If the greenhouse is sufficiently insulated in winter, it can be used in the ventilation process: the air intake from offices through the greenhouse, humidified and enriched in O2 (premixed, if necessary, with fresh air) reaches the general air treatment unit, and then sent back. The process is similar in the summer, but without recirculation, due to the humidity of the air extracted from offices. Stale air humidification enhances the thermal transfer process from the desiccant collector.


2011 ◽  
Vol 99-100 ◽  
pp. 624-627
Author(s):  
Chao Ying Liu

According to Xuanmei Yang and other scholars’ study, space heating and cooling together with water heating consist the majority of domestic energy consumption. This article analyzes the seven aspects of domestic energy consumption by heating or cooling. From the building envelope technology and low-carbon technology aspects, it provides numbers of feasible strategies to attain low-carbon residential design adapting to the energy consuming sources of the residential construction.


2013 ◽  
Vol 281 ◽  
pp. 649-652 ◽  
Author(s):  
Dae Kyo Jung ◽  
Dong Hwan Lee ◽  
Joo Ho Shin ◽  
Byung Hun Song ◽  
Seung Hee Park

Recently, the interest in increasing energy efficiency of building energy management system (BEMS) has become a high-priority and thus the related studies also increased. In particular, since the energy consumption in terms of heating and cooling system takes a large portion of the energy consumed in buildings, it is strongly required to enhance the energy efficiency through intelligent operation and/or management of HVAC (Heating, Ventilation and Air Conditioning) system. To tackle this issue, this study deals with the BIM (Building Information Modeling)-based energy performance analysis implemented in Energyplus. The BIM model constructed at Revit is updated at Design Builder, adding HVAC models and converted compatibly with the Energyplus environment. And then, the HVAC models are modified throughout the comparison between the energy consumption patterns and the real-time monitoring in-field data. In order to maximize the building energy performance, a genetic algorithm (GA)-based optimization technique is applied to the modified HVAC models. Throughout the proposed building energy simulation, finally, the best optimized HVAC control schedule for the target building can be obtained in the form of “supply air temperature schedule”.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1968 ◽  
Author(s):  
Marek Borowski ◽  
Piotr Mazur ◽  
Sławosz Kleszcz ◽  
Klaudia Zwolińska

The energy consumption of buildings is very important for both economic and environmental reasons. Newly built buildings are characterized by higher insulation and airtightness of the building envelope, and are additionally equipped with technologies that minimize energy consumption in order to meet legal requirements. In existing buildings, the modernization process should be properly planned, taking into account available technologies and implementation possibilities. Hotel buildings are characterized by a large variability of energy demand, both on a daily and a yearly basis. Monitoring systems, therefore, provide the necessary information needed for proper energy management in the building. This article presents an energy analysis of the Turówka hotel located in Wieliczka (southern Poland). The historical hotel facility is being modernized as part of the project to adapt the building to the requirements of a sustainable building. The modernization proposal includes a trigeneration system with a multifunctional reverse regenerator and control module using neural algorithms. The main purpose is to improve the energy efficiency of the building and adapt it to the requirements of low-energy buildings. The implementation of a monitoring system enables energy consumption to be reduced and improves the energy performance of the building, especially through using energy management systems and control modules. The proposed retrofit solution considers the high energy consumption, structure of the energy demand, and limits of retrofit intervention on façades.


2020 ◽  
Vol 12 (18) ◽  
pp. 7596
Author(s):  
Belen Moreno Santamaria ◽  
Fernando del Ama Gonzalo ◽  
Benito Lauret Aguirregabiria ◽  
Juan A. Hernandez Ramos

Large glass areas, even high-performance glazing with Low-E coating, could lead to discomfort if exposed to solar radiation due to radiant asymmetry. In addition, air-to-air cooling systems affect the thermal environment indoors. Water-Flow Glazing (WFG) is a disruptive technology that enables architects and engineers to design transparent and translucent facades with new features, such as energy management. Water modifies the thermal behavior of glass envelopes, the spectral distribution of solar radiation, the non-uniform nature of radiation absorption, and the diffusion of heat by conduction across the glass pane. The main goal of this article was to assess energy consumption and comfort conditions in office spaces with a large glass area by using WFG as a radiant heating and cooling system. This article evaluates the design and operation of an energy management system coupled with WFG throughout a year in an actual office space. Temperature, relative humidity, and solar radiation sensors were connected to a control unit that actuated the different devices to keep comfortable conditions with minimum energy consumption. The results in summer conditions revealed that if the mean radiant temperature ranged from 19.3 to 23 °C, it helped reduce the operative temperature to comfortable levels when the indoor air temperature was between 25 and 27.5 °C. The Predicted Mean Vote in summer conditions was between 0 and −0.5 in working hours, within the recommended values of ASHRAE-55 standard.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1746 ◽  
Author(s):  
Beungyong Park ◽  
Sihwan Lee

Under-ventilation and high energy consumption are some of the problems associated with school classrooms. Thus, it is necessary to develop a ventilation strategy that is characterized by high energy-saving and ventilation efficiency. To this end, this study aims to investigate natural ventilation as a possible strategy to improve the indoor environment while reducing ventilation loads and maintaining energy costs during intermediate seasons. Ventilation and cooling load reductions based on the opening and closing of several windows were analyzed. Window flow coefficients and ventilation rates were measured and used for computational fluid dynamics (CFD) simulation to obtain pressure coefficients for 16 wind directions. The results obtained showed that the improved natural ventilation strategy could be used to effectively establish required indoor conditions (26 °C, 60% RH). Additionally, compared with the mechanical ventilation system with variable refrigerant flow, this natural strategy resulted in a decrease in energy consumption of approximately 30%. However, its application requires that internal heat gain and CO2 emissions, which depend on human population density, as well as the room usage schedule should be considered.


Sign in / Sign up

Export Citation Format

Share Document