Green Synthesis of Metallic Nanoparticles Using Plant Compounds and Their Applications

Author(s):  
Selvaraj Arokiyaraj ◽  
Muthupandian Saravanan ◽  
Rajaraman Bharanidharan ◽  
Villianur Ibrahim Hairul Islam ◽  
Mohamed Bououdina ◽  
...  

The advancement in nanoparticulate system has a great impact in many scientific areas. Metallic nanoparticles (NPs) such as silver, gold and copper were found to exhibit antibacterial and other biological activities. The phytochemical constituents (Tannins, flavonoids, terpenoids, saponins and glycosides) present in the plant extracts were used for the green synthesis of NPs of desired size and morphology. Moreover, these active molecules act as reducing and capping agents for the synthe¬sis of NPs, which makes them suitable for biomedical applications. Apart from many approach on synthesis of nanoparticles, green synthesis method becomes more preferable because of its ecofriendly and nontoxic approach. This approach might pave the path for researchers across the globe to explore the potential of different herbs in the synthesis of NPs. This chapter will discuss the synthesis of various metal NPs using plants and their phytochemical constituent's involved during the synthesis. A section devoted to the different applications will be presented.

Author(s):  
Girish K

 Nanoscience has found various applications in different biomedical fields. The synthesis of nanoparticles (NPs) has become a vast area of research due to its potential applications. These particles can be prepared by different chemical, physical, and biological approaches. In recent years, green synthesis of NPs using plant extracts has gained much interest due to non-toxicity and very low cost of synthesis. The plant extracts act both as reducing agent as well as capping agent. Neem (Azadirachta indica A. Juss) is a well-known medicinal plant and has been studied for the biosynthesis of NPs. A. indica has various phytochemicals identified that can reduce the metal ions. The bioreduction of NPs from neem extract is an eco-friendly, low cost, and green synthesis method and these NPs are reported to exhibit good antimicrobial, mainly antibacterial, activity


2019 ◽  
Vol 9 (3) ◽  
pp. 311-328
Author(s):  
Heba M. Fahmy ◽  
Amena S. El-Feky ◽  
Taiseer M. Abd El-Daim ◽  
Merna M. Abd El-Hameed ◽  
Donia A. Gomaa ◽  
...  

Background: Owing to the importance of metallic nanoparticles, different researches and studies have been induced to synthesize them in many ways. One of the ways that paid attention last years is the green synthesis methods of nanoparticles or the so-called ''eco-friendly methods''. The most common sources that has been used for green synthesis of nanoparticles are plants, leaves, fungi and microorganisms. The green synthesis methods are widely used because they are inexpensive, usable, and nontoxic. Moreover, plant extracts are rich in reducing and capping agents. Methods: In the present review, green synthesis methods of gold nanoparticles (AuNps) using Chitosan, Klebsiella pneumoniae, Magnolia Kobus, Elettaria cardamomum (Elaichi) aqueous extract and other agents as a reducing/capping agents will be discussed in details. Moreover, we will make a comparison between different green routes of synthesis and the characterization of the obtained nanoparticles from each route. Results: The characterization and applications of the prepared GNPs from different routes are reviewed. Conclusion: The utilization of gold nanoparticles has been advocated because of their high biocomptability, administration in clinical applicability and in diverse aspects of life. It seems that plants are good candidates for nanoparticles production because they are inexpensive, available and renewable sources in addition, it is too simple to prepare extracts from them. Moreover, the great diversity in the types and amounts of reducing agents from plant extracts is responsible for the effortless generation of metallic nanoparticles of various shapes and morphologies.


Author(s):  
Abdul Nasir ◽  
Amir Khan ◽  
Jiayi Li ◽  
Muhammad Naeem ◽  
Atif Ali Khan Khalil ◽  
...  

: Nanotechnology has shown promising advancements in the field of drug development and its delivery. In particular, the applications of nanoparticles for treatment and diagnostics of cancer reached such a precision that it can detect a single cancer cell and can target it to deliver a payload for the treatment of that cancerous cell. Conventional cancer therapy methods have side effects, and diagnostics techniques are time-consuming and expensive. Nanoparticles (NPs) such as polymeric nanoparticles (nanogels, nanofibers, liposomes), metallic nanoparticles such as gold NP (GNPs), sliver NP (AgNP), calcium nanoparticles (CaNPs), carbon nanotubes (CNTs), graphene, and quantum dots (QDs) have revolutionized cancer diagnostics and treatments due to their high surface charge, size and morphology. Functionalization of these nanoparticles with different biological molecules, such as antibodies, helps them to targeted the delivery and early detection of cancer cells through their plasmon resonance properties. While some of the magnetic properties of nanoparticles such as iron (Fe), copper (Cu), and carbon NT were also evaluated for detection and treatments of cancer cells. An advanced type of nanoparticles, such as nanobubbles and oxygen-releasing polymers, are helping to address the hypoxia conditions in the cancer microenvironment, while others are employed in photodynamic therapy (PDT) and photothermal therapy (PTT) due to their intrinsic theranostic properties. The green synthesis of nanoparticles has further increased biocompatibility and broadened their applications. In this review paper, we discussed the advancement in nanotechnology and its applications for cancer treatment and diagnostics and highlighted challenges for translation of these advanced nano-based techniques for clinical applications and their green synthesis.


2020 ◽  
Vol 26 (40) ◽  
pp. 5188-5204
Author(s):  
Uzair Nagra ◽  
Maryam Shabbir ◽  
Muhammad Zaman ◽  
Asif Mahmood ◽  
Kashif Barkat

Nanosized particles, with a size of less than 100 nm, have a wide variety of applications in various fields of nanotechnology and biotechnology, especially in the pharmaceutical industry. Metal nanoparticles [MNPs] have been synthesized by different chemical and physical procedures. Still, the biological approach or green synthesis [phytosynthesis] is considered as a preferred method due to eco-friendliness, nontoxicity, and cost-effective production. Various plants and plant extracts have been used for the green synthesis of MNPs, including biofabrication of noble metals, metal oxides, and bimetallic combinations. Biomolecules and metabolites present in plant extracts cause the reduction of metal ions into nanosized particles by one-step preparation methods. MNPs have remarkable attractiveness in biomedical applications for their use as potential antioxidant, anticancer and antibacterial agents. The present review offers a comprehensive aspect of MNPs production via top-to-bottom and bottom-to-top approach with considerable emphasis on green technology and their possible biomedical applications. The critical parameters governing the MNPs formation by plant-based synthesis are also highlighted in this review.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Akshay Rajeev Geetha ◽  
Elizabeth George ◽  
Akshay Srinivasan ◽  
Jameel Shaik

Production of silver nanoparticles from the leaf extracts ofPimenta dioicais reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.


2021 ◽  
Vol 64 (2) ◽  
pp. 202-210
Author(s):  
Muhammad Isa Khan ◽  
Aliza Zahoor ◽  
Tahir Iqbal ◽  
Abdul Majid ◽  
Mohsin Ijaz

  Recently, different researchers find nanoparticles as an auspicious alternative to antibacterial agents due to their antibacterial behaviour. This antibacterial behaviour contributes in many biomedical applications including; tissue engineering, drug and gene delivery and, imaging. Furthermore, iron oxide nanoparticle gains much importance due to their magnetic characteristics and wide range of application. Iron oxide nanoparticle (IONPs) have exhibits great potential against bacteria. During the past decade, various routes were developed to synthesize iron oxide nanoparticle with suitable size and composition. This article reviews the recent iron oxide nanoparticle obtained by green synthesis with a focus on their response to antibacterial activities. The iron nanoparticles synthesized by green synthesis method has accumulated a vital attention over the last couple of years due to their unique characteristic as it makes sure environmental friendly, nontoxic and safe reagents.


2020 ◽  
pp. 91-108
Author(s):  
Ana M. Herrera-González ◽  
M. Caldera-Villalobos ◽  
J. García-Serrano ◽  
M. C. Reyes-Ángeles

2021 ◽  
pp. 165-199
Author(s):  
Lina M. Alnaddaf ◽  
Abdulsalam K. Almuhammady ◽  
Khaled F. M. Salem ◽  
Maysaa T. Alloosh ◽  
Maysoun M. Saleh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document