Diagnosis and Evaluation

Author(s):  
Yury N. Kovalyov

The accident free work of complex systems depends of the compatibility of their components. When it comes to socio-technical, this means the compatibility of the human factor with the environment and equipment, organized through a specific interface. At the same time, there is a certain contradiction: the modeling and design of equipment and interface is based on a classical mathematical apparatus, whereas its use for understanding human activity is confronted with the non-formalizability of many aspects of perception and decision-making. Elimination of this contradiction on the basis of the modeling apparatus, equally suitable for modeling all components of socio-technical systems, will open the way to improving the compatibility of components and reducing the accident rate. Therefore, the development of such a mathematical apparatus is an important problem. In this chapter is presented the modelling instrument, which is adequate to the composite open systems properties – axiomatic wave model, theory of self-organization, practical examples.

Author(s):  
Yury N. Kovalyov

The accident free work of complex systems depends of the compatibility of their components. When it comes to socio-technical, this means the compatibility of the human factor with the environment and equipment, organized through a specific interface. At the same time, there is a certain contradiction: the modeling and design of equipment and interface is based on a classical mathematical apparatus, whereas its use for understanding human activity is confronted with the non-formalizability of many aspects of perception and decision-making. Elimination of this contradiction on the basis of the modeling apparatus, equally suitable for modeling all components of socio-technical systems, will open the way to improving the compatibility of components and reducing the accident rate. Therefore, the development of such a mathematical apparatus is an important problem. In this chapter is presented the modelling instrument, which is adequate to the composite open systems properties – axiomatic wave model, theory of self-organization, practical examples.


Author(s):  
E. G. Andrianova ◽  
S. A. Golovin ◽  
S. V. Zykov ◽  
S. A. Lesko ◽  
E. R. Chukalina

The directions of perspective research in the field of analysis and modeling of the dynamics of time series of processes in complex systems with the presence of the human factor are described. The dynamics of processes in such systems is described by nonstationary time series. Predicting the evolution of such systems is of great importance for managing processes in social (election campaigns), economic (stock, futures and commodity markets) and socio-technical systems (social networks). The general information on time series and tasks of their analysis is given. Modern methods of time series analysis for economic processes are considered. The results show that economic processes cannot be considered completely random, since they tend to self-organize and, moreover, are subject to the influence of memory of previous states. It was revealed that one of the main tasks in modeling processes in sociotechnical systems (for example, social networks) is the development of a mathematical apparatus for bringing data to a single measurement scale. The modern models of analysis and forecasting of electoral processes based on the analysis of time series: structural, polling, hybrid. Based on the analysis, their advantages and disadvantages are considered. In conclusion, it was concluded that to describe processes in complex systems with the presence of the human factor, in addition to traditional factors, it is necessary to develop and use methods and tools to take into account the possibility of self-organization of human groups and the presence of memory about previous states of the system.


2021 ◽  
Author(s):  
Sofia Karam ◽  
Morteza Nagahi ◽  
Vidanelage Dayarathna ◽  
Junfeng Ma ◽  
Raed Jaradat ◽  
...  

The emergence of modern complex systems is often exacerbated by a proliferation of information and complication of technologies. Because current complex systems challenges can limit an organization's ability to efficiently handle socio-technical systems, it is essential to provide methods and techniques that count on individuals' systems skills. When selecting future employees, companies must constantly refresh their recruitment methods in order to find capable candidates with the required level of systemic skills who are better fit for their organization's requirements and objectives. The purpose of this study is to use systems thinking skills as a supplemental selection tool when recruiting prospective employees. To the best of our knowledge, there is no prior research that studied the use of systems thinking skills for recruiting purposes. The proposed framework offers an established tool to HRM professionals for assessing and screening of prospective employees of an organization based on their level of systems thinking skills while controlling uncertainties of complex decision-making environment with the fuzzy linguistic approach. This framework works as an expert system to find the most appropriate candidate for the organization to enhance the human capital for the organization.


2020 ◽  
Vol 43 ◽  
Author(s):  
Valerie F. Reyna ◽  
David A. Broniatowski

Abstract Gilead et al. offer a thoughtful and much-needed treatment of abstraction. However, it fails to build on an extensive literature on abstraction, representational diversity, neurocognition, and psychopathology that provides important constraints and alternative evidence-based conceptions. We draw on conceptions in software engineering, socio-technical systems engineering, and a neurocognitive theory with abstract representations of gist at its core, fuzzy-trace theory.


2019 ◽  
pp. 38-42
Author(s):  
S. Yu. Strakhov ◽  
A. A. Karasev

Authors explore issue of applicability of the methodology of building diagnostic software using network formal models in the functional testing of electronic equipment as part of complex technical systems. Using methods of system analysis allows to perform a decomposition of interdependent subsystems and to reveal basic acts of interaction between the control‑verification equipment and the object of diagnosis. Mathematical apparatus of Petri nets should be employed for the formalized description of such acts and determined the cause‑and‑effect relations in the diagnosed complex system`s processes. Network models properties studying (such as safety and accomplishment of the final positions) allows us to move to the test object`s algorithm`s developing. The article presents an approach of a formalized description for basic acts of interaction between the diagnosis system and the object.


2020 ◽  
Vol 26 (6) ◽  
pp. 2927-2955
Author(s):  
Mar Palmeros Parada ◽  
Lotte Asveld ◽  
Patricia Osseweijer ◽  
John Alexander Posada

AbstractBiobased production has been promoted as a sustainable alternative to fossil resources. However, controversies over its impact on sustainability highlight societal concerns, value tensions and uncertainties that have not been taken into account during its development. In this work, the consideration of stakeholders’ values in a biorefinery design project is investigated. Value sensitive design (VSD) is a promising approach to the design of technologies with consideration of stakeholders’ values, however, it is not directly applicable for complex systems like biorefineries. Therefore, some elements of VSD, such as the identification of relevant values and their connection to a technology’s features, are brought into biorefinery design practice. Midstream modulation (MM), an approach to promoting the consideration of societal aspects during research and development activities, is applied to promote reflection and value considerations during the design decision making. As result, it is shown that MM interventions during the design process led to new design alternatives in support of stakeholders' values, and allowed to recognize and respond to emerging value tensions within the scope of the project. In this way, the present work shows a novel approach for the technical investigation of VSD, especially for biorefineries. Also, based on this work it is argued that not only reflection, but also flexibility and openness are important for the application of VSD in the context of biorefinery design.


2014 ◽  
Vol 17 (03n04) ◽  
pp. 1450016 ◽  
Author(s):  
V. I. YUKALOV ◽  
D. SORNETTE

The idea is advanced that self-organization in complex systems can be treated as decision making (as it is performed by humans) and, vice versa, decision making is nothing but a kind of self-organization in the decision maker nervous systems. A mathematical formulation is suggested based on the definition of probabilities of system states, whose particular cases characterize the probabilities of structures, patterns, scenarios, or prospects. In this general framework, it is shown that the mathematical structures of self-organization and of decision making are identical. This makes it clear how self-organization can be seen as an endogenous decision making process and, reciprocally, decision making occurs via an endogenous self-organization. The approach is illustrated by phase transitions in large statistical systems, crossovers in small statistical systems, evolutions and revolutions in social and biological systems, structural self-organization in dynamical systems, and by the probabilistic formulation of classical and behavioral decision theories. In all these cases, self-organization is described as the process of evaluating the probabilities of macroscopic states or prospects in the search for a state with the largest probability. The general way of deriving the probability measure for classical systems is the principle of minimal information, that is, the conditional entropy maximization under given constraints. Behavioral biases of decision makers can be characterized in the same way as analogous to quantum fluctuations in natural systems.


Author(s):  
Tetiana Sych ◽  
◽  

The article considers the factors influencing the efficiency of management decisions made by local government bodies in the modern conditions of public administration reform and the development of local self-government in Ukraine. The author outlines the features of this problem, the main features of state-management decisions, the essence of the concepts "effect", "efficiency of management decisions", the main approaches to the study of the problem of decision-making are highlighted. The main attention is paid to the direction of research, which takes into account the human factor. The main ideas of the representative of this direction - the Nobel laureate D. Kahneman, presented in the book "Noise", are considered. This work raises the issue of system errors among those who make decisions. The views of the domestic scientist O. Maltsev on the designated problem and the provisions of D. Kahneman's book are presented. The results of the analysis by scientists of the influence of the human factor and psychological characteristics of management decision-making on the efficiency of decisions are reflected. The conclusions of scientists regarding the need to take into account the qualities of a decision- making person and his professional training are summarized. The main characteristics of the personality that influence decision-making are given from the domestic scientific literature on public administration problems. In accordance with these ideas, the requirements for the positions of civil servants, local self-government bodies, as well as the modern practice of training specialists and managers in this field are considered. It is concluded that the primary importance for making effective decisions by local government bodies is the use by specialists and managers of modern technologies for developing and making management decisions, the development of their personal qualities for making management decisions in the process of training and obtaining specialized management education in universities.


Author(s):  
M. Kiwan ◽  
D.V. Berezkin ◽  
M. Raad ◽  
B. Rasheed

Statement of a problem. One of the main tasks today is to prevent accidents in complex systems, which requires determining their cause. In this regard, several theories and models of the causality of accidents are being developed. Traditional approaches to accident modeling are not sufficient for the analysis of accidents occurring in complex environments such as socio-technical systems, since an accident is not the result of individual component failure or human error. Therefore, we need more systematic methods for the investigation and modeling of accidents. Purpose. Conduct a comparative analysis of accident models in complex systems, identify the strengths and weaknesses of each of these models, and study the feasibility of their use in risk management in socio-technical systems. The paper analyzes the main approaches of accident modeling and their limitations in determining the cause-and-effect relationships and dynamics of modern complex systems. the methodologies to safety and accident models in sociotechnical systems based on systems theory are discussed. The complexity of sociotechnical systems requires new methodologies for modeling the development of emergency management. At the same time, it is necessary to take into account the socio-technical system as a whole and to focus on the simultaneous consideration of the social and technical aspects of the systems. When modeling accidents, it is necessary to take into account the social structures and processes of social interaction, the cultural environment, individual characteristics of a person, such as their abilities and motivation, as well as the engineering design and technical aspects of systems. Practical importance. Based on analyzing various techniques for modeling accidents, as well as studying the examples used in modeling several previous accidents and review the results of this modeling, it is concluded that it is necessary to improve the modeling techniques. The result was the appearance of hybrid models of risk management in socio-technical systems, which we will consider in detail in our next work.


2018 ◽  
Vol 226 ◽  
pp. 04008
Author(s):  
Vladimir M. Zababurin ◽  
Marina A. Egorova ◽  
Yuliya A. Polyakova

The main disadvantages of the existing methods of managing the current state of technical systems are revealed. A non-standard approach is proposed for managing the functionality of the system in emergency situations. The character of the dynamics of the recovery processes of the technical system is determined as its state approaches the emergency one on the basis of the recommendations of the theory of self-organized criticality (SOC). The physical criteria for assessing the current state of the technical system are revealed. The rationale for using the physical indicator of the functional destabilization of the system is given. The signs of the pre-emergency state of the technical system are considered. A grapho-analytical model for the development of an emergency situation has been developed. The fact of the inevitable increase in the entropy of the system upon its transition to an emergency state is established. Structuring of the system development process in an emergency situation is carried out in three stages. The methodology for estimating the pre-emergency state of complex open systems is presented. The advantages of the proposed approach to managing the state of technical systems in comparison with traditional ones are established.


Sign in / Sign up

Export Citation Format

Share Document