An Exploration of ADHD and Comorbidity With Substance Abuse and Brain Development

Author(s):  
York Williams

Methylphenidate (MPH) is the most commonly used drug to treat attention deficit/hyperactivity disorder (ADHD) in children effectively and safely. However, in spite of its widespread application throughout what is considered one of the most plastic and sensitive phases of brain development in children, very little is known to date about its long-term effects on brain structure and function leading well into later adolescence and adulthood. Additionally, there is scant information available to parents, clinicians, and clients with ADD/ADHD about the influence of MPH on brain development. More importantly, recent human and animal studies suggest that MPH alters the dopaminergic system with long-term effects beyond the termination of treatment. As such, a multimodal treatment with psychodynamic therapies can assist the treatment team to support the development of the client's pro-social skills in addition to medication treatment, thus reducing full reliance on MPH as the primary treatment for ADD/ADHD.

2020 ◽  
Vol 21 (16) ◽  
pp. 5850 ◽  
Author(s):  
Sabrina I. Hanswijk ◽  
Marcia Spoelder ◽  
Ling Shan ◽  
Michel M. M. Verheij ◽  
Otto G. Muilwijk ◽  
...  

Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other’s impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.


2018 ◽  
Author(s):  
Kathryn L. Mills ◽  
Christian K. Tamnes

The development of the human brain involves a prolonged course of maturation, enabling us to learn to navigate our complex social environments. Here, we give short introductions to post-mortem and animal studies on postnatal brain development and selected methodological considerations for longitudinal developmental neuroimaging. We then describe typical developmental changes in brain structure and function from childhood to adulthood. We focus on measurements derived from magnetic resonance imaging (MRI) and on longitudinal data. Specifically, we discuss brain structural development based on morphometry and diffusion tensor imaging (DTI) studies, and functional development based on resting-state and task-based functional MRI. Finally, we highlight selected current overarching research questions and argue that an important step in answering these questions is to study individual differences in longitudinal brain development.


1995 ◽  
Vol 2 (1) ◽  
pp. 25-31 ◽  
Author(s):  
David V Bates

Part 1 of this review is concerned with theoretical issues of ozone dosimetry, animal and cellular studies that illustrate the mechanism of action of ozone on living tissues, and with clinical studies. Animal studies have indicated that there are long term effects from low level long term ozone exposure. Clinical studies involve controlled ozone exposures on human subjects, both normals and asthmatics. Exercise concomitant with the ozone exposure increases the effect of the gas. It is concluded that the induction of an inflammatory response in the airway, both in the nose and in the lung, is the striking and earliest feature of ozone exposure. Current unexplained observations include: the dissociation between the inflammatory and function test response; the mechanisms of ‘adaptation’ and of airway hyperresponsiveness; and the phenomena that underlie the effect of ozone on maximal athletic performance.


2021 ◽  
Author(s):  
Joseph A. Behnke ◽  
Changtian Ye ◽  
Aayush Setty ◽  
Kenneth H. Moberg ◽  
James Q. Zheng

AbstractMild head trauma, including concussion, can lead to chronic brain dysfunction and degeneration but the underlying mechanisms remain poorly understood. Here, we developed a novel head impact system to investigate the long-term effects of mild head trauma on brain structure and function, as well as the underlying mechanisms in Drosophila melanogaster. We find that Drosophila subjected to repetitive head impacts develop long-term deficits, including impaired startle-induced climbing, progressive brain degeneration, and shortened lifespan, all of which are substantially exacerbated in female flies. Interestingly, head impacts elicit an elevation in neuronal activity and its acute suppression abrogates the detrimental effects in female flies. Together, our findings validate Drosophila as a suitable model system for investigating the long-term effects of mild head trauma, suggest an increased vulnerability in brain injury in female flies, and indicate that early altered neuronal excitability may be a key mechanism linking mild brain trauma to chronic degeneration.


Author(s):  
Kathryn L. Mills ◽  
Christian K. Tamnes

The development of the human brain involves a prolonged course of maturation, enabling us to learn to navigate our complex social environments. Here, the authors give short introductions to post-mortem and animal studies on postnatal brain development and selected methodological considerations for longitudinal developmental neuroimaging. The authors then describe typical developmental changes in brain structure and function from childhood to adulthood. The authors focus on measurements derived from magnetic resonance imaging (MRI) and on longitudinal data. Specifically, the authors discuss brain structural development based on morphometry and diffusion tensor imaging (DTI) studies, and functional development based on resting-state and task-based functional MRI. Finally, the authors highlight selected current overarching research questions and argue that an important step in answering these questions is to study individual differences in longitudinal brain development.


1996 ◽  
Vol 8 (1) ◽  
pp. 183-199 ◽  
Author(s):  
Graham A. Rogeness ◽  
Erin B. McClure

AbstractNorepinephrine (NE), dopamine (DA), and serotonin (5HT) are three of the more than thirty neurotransmitters (NTs) in the brain. Axons from a relatively small number of cell bodies located in the midbrain and brainstem branch out to connect with virtually all areas of the brain. Via these connections, these three NTs participate in the regulation of several behavioral systems that help modulate the interaction of the individual with his/her environment. Because the NT systems continue to develop after birth, interactions between the individual and his/her environment after birth may affect the development of these systems and have long-term effects on the individual's behavior. Animal studies indicate that early experience affects behavior and biogenic amine systems in the adult. For instance, one study showed that maternal deprivation, which is analogous to human neglect, affects the NE system in monkeys and may have a long-lasting effect on its development and function. In a previous study, similar relationships between early neglect and the NE system in humans were examined. Our results show that emotionally disturbed children with a history of neglect have lower dopamine-β-hydroxylase (DβH) activity, an enzyme involved in the synthesis of NE, than do children with no history of neglect. Additionally, the children with a history of neglect have lower systolic and diastolic blood pressure, both of which are functions mediated by the NE system, than the other children studied. These results support findings in animal studies that neglect affects the development of the NE system in a long-lasting, if not permanent way.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Aline M De Souza ◽  
Jonathas Almeida ◽  
Nataliia Shults ◽  
Hong Ji ◽  
Kathryn Sandberg

Severe caloric restriction (sCR) increases the risk for acute cardiovascular disease. Less understood are the long-term effects on cardiovascular disease risk after the sCR period has ended. We investigated the effects of sCR on heart structure and function months after refeeding (sCR-Refed). Female Fischer rats (3-months-old) were maintained on (CT) ad libitum or a 60% caloric restricted diet for 2 weeks. Thereafter, all rats received ad libitum chow for 3 months and they were analyzed by precision ultrasound to assess their heart function. After imaging, the animals were sacrificed and the hearts were subjected to ischemia-reperfusion (I/R) using a Langendorff preparation. After 2 weeks of sCR, rats lost 15% of their initial body weight (BW) [% (100*(Final-Initial/Initial)): CT, 1.5±0.8 vs sCR, -15.4±1.1; p<0.001;n=8]. After 3 months of refeeding, there was no detectable difference in BW between CT and sFR-Refed groups. Isolated hearts from the sCR-Refed rats exhibited worse myocardial pathology after I/R compared to CT rats. The parallel orientation of myofibers and striations normally present in cardiomyocytes was lost in sCR-Refed rats. Further analysis revealed uneven blood-filling of the microcirculatory vessels and prominent interstitial edema of the myocardium. Hearts from sCR-Refed rats had more atrophied cardiomyocytes than CT [Atrophied/Total (%): CT, 0.2±0.1 vs sCR-Refed, 50.6±1.1; p<0.001; n=5]. The number of arrhythmic events during a 30 min ischemic interval in isolated hearts doubled after 2 weeks on the sCR diet ( data not shown ) and remained doubled 3 months later [Arrhythmias (% of time): CT, 34±8 vs sCR-Refed, 68±9; p=0.02; n=8]. Ultrasound imaging showed no difference in stroke volume, coronary perfusion pressure and left ventricular mass. However, the thickness of the left ventricular posterior wall was significantly reduced in sCR-Refed rats [(mm): CT, 2.55 ±0.03 vs sCR-Refed, 2.10±0.04; p=0.002; n=4]. These findings indicate heart structure and function remained damaged months after the sCR period ended and BW was restored. These studies have adverse cardiovascular risk implications for who are subjected either voluntarily (crash diets) or involuntarily (very low food security) to periods of inadequate caloric intake.


2019 ◽  
Author(s):  
Madeline Farber ◽  
Dylan Gee ◽  
Ahmad R. Hariri

Studies of early adversity such as trauma, abuse, and neglect highlight the critical importance of quality caregiving in brain development and mental health. However, the impact of normative range variability in caregiving on such biobehavioral processes remains poorly understood. Thus, we lack an essential foundation for understanding broader, population-representative developmental mechanisms of risk and resilience. Here, we conduct a scoping review of the extant literature centered on the question, “Is variability in normative range parenting associated with variability in brain structure and function?” After removing duplicates and screening by title, abstract, and full-text, 23 records were included in a qualitative review. The most striking outcome of this review was not only how few studies have explored associations between brain development and normative range parenting, but also how little methodological consistency exists across published studies. In light of these limitations, we propose recommendations for future research on normative range parenting and brain development. In doing so, we hope to facilitate evidence-based research that will help inform policies and practices that yield optimal developmental trajectories and mental health.


Sign in / Sign up

Export Citation Format

Share Document