scholarly journals Longitudinal structural and functional brain development in childhood and adolescence

Author(s):  
Kathryn L. Mills ◽  
Christian K. Tamnes

The development of the human brain involves a prolonged course of maturation, enabling us to learn to navigate our complex social environments. Here, the authors give short introductions to post-mortem and animal studies on postnatal brain development and selected methodological considerations for longitudinal developmental neuroimaging. The authors then describe typical developmental changes in brain structure and function from childhood to adulthood. The authors focus on measurements derived from magnetic resonance imaging (MRI) and on longitudinal data. Specifically, the authors discuss brain structural development based on morphometry and diffusion tensor imaging (DTI) studies, and functional development based on resting-state and task-based functional MRI. Finally, the authors highlight selected current overarching research questions and argue that an important step in answering these questions is to study individual differences in longitudinal brain development.

2018 ◽  
Author(s):  
Kathryn L. Mills ◽  
Christian K. Tamnes

The development of the human brain involves a prolonged course of maturation, enabling us to learn to navigate our complex social environments. Here, we give short introductions to post-mortem and animal studies on postnatal brain development and selected methodological considerations for longitudinal developmental neuroimaging. We then describe typical developmental changes in brain structure and function from childhood to adulthood. We focus on measurements derived from magnetic resonance imaging (MRI) and on longitudinal data. Specifically, we discuss brain structural development based on morphometry and diffusion tensor imaging (DTI) studies, and functional development based on resting-state and task-based functional MRI. Finally, we highlight selected current overarching research questions and argue that an important step in answering these questions is to study individual differences in longitudinal brain development.


Author(s):  
York Williams

Methylphenidate (MPH) is the most commonly used drug to treat attention deficit/hyperactivity disorder (ADHD) in children effectively and safely. However, in spite of its widespread application throughout what is considered one of the most plastic and sensitive phases of brain development in children, very little is known to date about its long-term effects on brain structure and function leading well into later adolescence and adulthood. Additionally, there is scant information available to parents, clinicians, and clients with ADD/ADHD about the influence of MPH on brain development. More importantly, recent human and animal studies suggest that MPH alters the dopaminergic system with long-term effects beyond the termination of treatment. As such, a multimodal treatment with psychodynamic therapies can assist the treatment team to support the development of the client's pro-social skills in addition to medication treatment, thus reducing full reliance on MPH as the primary treatment for ADD/ADHD.


2020 ◽  
Vol 21 (16) ◽  
pp. 5850 ◽  
Author(s):  
Sabrina I. Hanswijk ◽  
Marcia Spoelder ◽  
Ling Shan ◽  
Michel M. M. Verheij ◽  
Otto G. Muilwijk ◽  
...  

Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other’s impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.


2020 ◽  
Author(s):  
Christian K. Tamnes ◽  
Kathryn L. Mills

The human brain undergoes a remarkably protracted development. Magnetic resonance imaging (MRI) has allowed us to capture these changes through longitudinal investigations. In this chapter, we describe the typical developmental trajectories of human brain structure between childhood and early adulthood. We focus on measurements of brain morphometry and measurements derived from diffusion tensor imaging (DTI). By integrating findings from multiple longitudinal investigations with seminal cellular studies, we describe neurotypical patterns of structural brain development and possible underlying biological mechanisms. Finally, we highlight several new measures and approaches to examine structural brain development.


2019 ◽  
Author(s):  
Madeline Farber ◽  
Dylan Gee ◽  
Ahmad R. Hariri

Studies of early adversity such as trauma, abuse, and neglect highlight the critical importance of quality caregiving in brain development and mental health. However, the impact of normative range variability in caregiving on such biobehavioral processes remains poorly understood. Thus, we lack an essential foundation for understanding broader, population-representative developmental mechanisms of risk and resilience. Here, we conduct a scoping review of the extant literature centered on the question, “Is variability in normative range parenting associated with variability in brain structure and function?” After removing duplicates and screening by title, abstract, and full-text, 23 records were included in a qualitative review. The most striking outcome of this review was not only how few studies have explored associations between brain development and normative range parenting, but also how little methodological consistency exists across published studies. In light of these limitations, we propose recommendations for future research on normative range parenting and brain development. In doing so, we hope to facilitate evidence-based research that will help inform policies and practices that yield optimal developmental trajectories and mental health.


2019 ◽  
Vol 9 (5) ◽  
pp. 433-442 ◽  
Author(s):  
Malon Van den Hof ◽  
Anne Marleen ter Haar ◽  
Matthan W.A. Caan ◽  
Rene Spijker ◽  
Johanna H. van der Lee ◽  
...  

ObjectiveWe aim to give an overview of the available evidence on brain structure and function in PHIV-infected patients (PHIV+) using long-term combination antiretroviral therapy (cART) and how differences change over time.MethodsWe conducted an electronic search using MEDLINE, Embase, and PsycINFO. We used the following selection criteria: cohort and cross-sectional studies that reported on brain imaging differences between PHIV+ of all ages who used cART for at least six months before neuroimaging and HIV-negative controls. Two reviewers independently selected studies, performed data extraction, and assessed quality of studies.ResultsAfter screening 1500 abstracts and 343 full-text articles, we identified 19 eligible articles. All included studies had a cross-sectional design and used MRI with different modalities: structural MRI (n = 7), diffusion tensor imaging (DTI) (n = 6), magnetic resonance spectroscopy (n = 5), arterial spin labeling (n = 1), and resting-state functional neuroimaging (n = 1). Studies showed considerable methodological limitations and heterogeneity, preventing us to perform meta-analyses. DTI data on white matter microstructure suggested poorer directional diffusion in cART-treated PHIV+ compared with controls. Other modalities were inconclusive.ConclusionEvidence may suggest brain structure and function differences in the population of PHIV+ on long-term cART compared with the HIV-negative population. Because of a small study population, and considerable heterogeneity and methodological limitations, the extent of brain structure and function differences on neuroimaging between groups remains unknown.


Author(s):  
Mark Woolrich ◽  
Mark Jenkinson ◽  
Clare Mackay

The brain is a highly complex system that is inaccessible to biopsy, which puts human brain imaging at the heart of our attempts to understand psychiatric disorders. Imaging has the potential to uncover the pathophysiology, provide biomarkers for use in the development and monitoring of treatments, and stratify patients for studies and trials. This chapter introduces the three main brain imaging technologies that are used to assay brain structure and function: magnetic resonance imaging (MRI), molecular imaging positron emission tomography (PET), and single-photon emission computed tomography (SPECT); electrophysiology [electroencephoaography (EEG)]; and magnetoencephalograpy (MEG). The chapter outlines the principles behind their use and the nature of the information that can be extracted. Together, these brain imaging methods can provide complementary windows into the living brain as an increasingly essential suite of tools for experimental medicine in psychiatry.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2131 ◽  
Author(s):  
Stephen A. Fleming ◽  
Austin T. Mudd ◽  
Jonas Hauser ◽  
Jian Yan ◽  
Sylviane Metairon ◽  
...  

Mounting evidence suggests that dietary oligosaccharides promote brain development. This study assessed the capacity of oligofructose (OF) alone or in combination with 2′-fucosyllactose (2′-FL) to alter recognition memory, structural brain development, and hippocampal gene expression. Beginning on postnatal day (PND) 2, male pigs received one of three milk replacers formulated to contain OF, OF + 2′-FL, or no oligosaccharides (CON). Pigs were tested on the novel object recognition task using delays of 1 or 48 h at PND 22. At PND 32–33, magnetic resonance imaging (MRI) procedures were used to assess structural brain development and hippocampal tissue was collected for analysis of mRNA expression. Pigs that consumed the OF diet demonstrated increased recognition memory after a 1 h delay, whereas those consuming diets containing OF + 2′-FL displayed increased recognition memory after a 48 h delay. Pigs fed OF or OF + 2′-FL exhibited a larger relative volume of the olfactory bulbs compared with CON pigs. Provision of OF or OF + 2′-FL altered gene expression related to dopaminergic, GABAergic, cholinergic, cell adhesion, and chromatin remodeling processes. Collectively, these data indicate that dietary OF and OF + 2′-FL differentially improve cognitive performance and affect olfactory bulb structural development and hippocampal gene expression.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Brittany C. Clawson ◽  
Jaclyn Durkin ◽  
Sara J. Aton

Since the advent of EEG recordings, sleep spindles have been identified as hallmarks of non-REM sleep. Despite a broad general understanding of mechanisms of spindle generation gleaned from animal studies, the mechanisms underlying certain features of spindles in the human brain, such as “global” versus “local” spindles, are largely unknown. Neither the topography nor the morphology of sleep spindles remains constant throughout the lifespan. It is likely that changes in spindle phenomenology during development and aging are the result of dramatic changes in brain structure and function. Across various developmental windows, spindle activity is correlated with general cognitive aptitude, learning, and memory; however, these correlations vary in strength, and even direction, depending on age and metrics used. Understanding these differences across the lifespan should further clarify how these oscillations are generated and their function under a variety of circumstances. We discuss these issues, and their translational implications for human cognitive function. Because sleep spindles are similarly affected in disorders of neurodevelopment (such as schizophrenia) and during aging (such as neurodegenerative conditions), both types of disorders may benefit from therapies based on a better understanding of spindle function.


Sign in / Sign up

Export Citation Format

Share Document