Process Optimizations of Direct Metal Laser Melting Using Digital Twin

2022 ◽  
pp. 177-193
Author(s):  
Sachin Salunkhe ◽  
Vishal Gangadhar Naranje ◽  
Jayavelu S. ◽  
Atiq Rehman

Over the past decades, air traffic has increased to such an extent that it has highly impacted (anthropogenic) climate change due to heat, noise, particulates, and gas emissions. With airplane turbines being a pivotal contributor to such adverse developments, there has been an increasing interest in research regarding the optimization of airplane turbines. In line with these efforts, this chapter adopts an innovative approach that bridges the digital and physical through the application of digital twin technology to direct metal laser melting to optimize product development. Specifically, it encompasses a guideline towards how digital twin solutions are created based on all the latest research. A manual approach devises a digital twin interface where the prototype is manufactured used additive manufacturing. This manual can then be applied to optimize airplane turbines regarding their safety, environmental impact, fuel efficiency, and cost.

2016 ◽  
Vol 22 (6) ◽  
pp. 871-877 ◽  
Author(s):  
Matthias Baldinger ◽  
Gideon Levy ◽  
Paul Schönsleben ◽  
Matthias Wandfluh

Purpose To design for additive manufacturing (AM), the decision to use AM needs to be taken early in the product development process. Therefore, engineers need to be able to estimate AM part cost based on the few parameters available at this point in the process. This paper aims to develop suitable cost estimation models for this purpose, focusing on buy scenarios, as many companies choose to buy parts at service providers. Design/methodology/approach This study applies analogical cost estimation techniques to a data set of price quotations for laser sintering and laser melting parts. Findings The paper proposes easy-to-apply cost estimation models for laser sintering and laser melting for buy scenarios. Further, it generates new insights on the AM service provider market. Research limitations/implications The proposed models are only suitable for buy scenarios and are only a snapshot of cost achievable in 2014. Practical implications The proposed cost estimation models enable engineers to approximate AM part costs early in the product development process and thereby ease the decision to rapid manufacture certain parts. Originality/value This study addresses two gaps in the AM cost literature. It is the first study to take a qualitative approach to AM cost estimation, which is more suitable early in the product development process than the currently available quantitative studies. Further, it develops the first cost estimation for buy scenarios.


2020 ◽  
pp. 161-165
Author(s):  
Bertram de Crom ◽  
Jasper Scholten ◽  
Janjoris van Diepen

To get more insight in the environmental performance of the Suiker Unie beet sugar, Blonk Consultants performed a comparative Life Cycle Assessment (LCA) study on beet sugar, cane sugar and glucose syrup. The system boundaries of the sugar life cycle are set from cradle to regional storage at the Dutch market. For this study 8 different scenarios were evaluated. The first scenario is the actual sugar production at Suiker Unie. Scenario 2 until 7 are different cane sugar scenarios (different countries of origin, surplus electricity production and pre-harvest burning of leaves are considered). Scenario 8 concerns the glucose syrup scenario. An important factor in the environmental impact of 1kg of sugar is the sugar yield per ha. Total sugar yield per ha differs from 9t/ha sugar for sugarcane to 15t/ha sugar for sugar beet (in 2017). Main conclusion is that the production of beet sugar at Suiker Unie has in general a lower impact on climate change, fine particulate matter, land use and water consumption, compared to cane sugar production (in Brazil and India) and glucose syrup. The impact of cane sugar production on climate change and water consumption is highly dependent on the country of origin, especially when land use change is taken into account. The environmental impact of sugar production is highly dependent on the co-production of bioenergy, both for beet and cane sugar.


2019 ◽  
Vol 11 (18) ◽  
pp. 4998 ◽  
Author(s):  
Federica Borgonovo ◽  
Cecilia Conti ◽  
Daniela Lovarelli ◽  
Valentina Ferrante ◽  
Marcella Guarino

Ammonia (NH3), methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions from livestock farms contribute to negative environmental impacts such as acidification and climate change. A significant part of these emissions is produced from the decomposition of slurry in livestock facilities, during storage and treatment phases. This research aimed at evaluating the effectiveness of the additive “SOP LAGOON” (made of agricultural gypsum processed with proprietary technology) on (i) NH3 and Greenhouse Gas (GHG) emissions, (ii) slurry properties and N loss. Moreover, the Life Cycle Assessment (LCA) method was applied to assess the potential environmental impact associated with stored slurry treated with the additive. Six barrels were filled with 65 L of cattle slurry, of which three were used as a control while the additive was used in the other three. The results indicated that the use of the additive led to a reduction of total nitrogen, nitrates, and GHG emissions. LCA confirmed the higher environmental sustainability of the scenario with the additive for some environmental impact categories among which climate change. In conclusion, the additive has beneficial effects on both emissions and the environment, and the nitrogen present in the treated slurry could partially displace a mineral fertilizer, which can be considered an environmental credit.


2021 ◽  
pp. 1-27
Author(s):  
Xiangbai He

Abstract There are two general pathways towards climate change litigation in China: tort-based litigation to hold carbon emitters accountable in civil law, and administrative litigation against the government to demand better climate regulation. While the first pathway is gaining momentum among Chinese scholars, this article argues that legal barriers to applying tort-based rules to climate change should be fairly acknowledged. The article argues that China's legal framework for environmental impact assessment (EIA) provides more openness and flexibility for the resolution of climate change disputes. Therefore, EIA-based climate lawsuits, which challenge environmental authorities for not adequately taking climate change factors into account in decision-making processes, encounter relatively fewer legal barriers, require less radical legal or institutional reform, and have greater potential to maintain existing legal orders. The regulatory effects produced by EIA-based litigation suggest that the scholarship on climate change litigation in China should take such litigation seriously because it could influence both governments and emitters in undertaking more proactive efforts. This China-based study, with a special focus on judicial practice in the largest developing country, will shine a light on China's contribution to transnational climate litigation.


Author(s):  
Filippo Simoni ◽  
Andrea Huxol ◽  
Franz-Josef Villmer

AbstractIn the last years, Additive Manufacturing, thanks to its capability of continuous improvements in performance and cost-efficiency, was able to partly replace and redefine well-established manufacturing processes. This research is based on the idea to achieve great cost and operational benefits especially in the field of tool making for injection molding by combining traditional and additive manufacturing in one process chain. Special attention is given to the surface quality in terms of surface roughness and its optimization directly in the Selective Laser Melting process. This article presents the possibility for a remelting process of the SLM parts as a way to optimize the surfaces of the produced parts. The influence of laser remelting on the surface roughness of the parts is analyzed while varying machine parameters like laser power and scan settings. Laser remelting with optimized parameter settings considerably improves the surface quality of SLM parts and is a great starting point for further post-processing techniques, which require a low initial value of surface roughness.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


2020 ◽  
Vol 24 (09) ◽  

For the month of September 2020, APBN dives into the world of 3D printing and its wide range of real-world applications. Keeping our focus on the topic of the year, the COVID-19 pandemic, we explore the environmental impact of the global outbreak as well as gain insight to the top 5 vaccine platforms used in vaccine development. Discover more about technological advancements and how it is assisting innovation in geriatric health screening.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3504
Author(s):  
Blanka Tundys ◽  
Tomasz Wiśniewski

The aim of the study was to analyze emissions in the supply chain and to identify, based on a literature analysis, which supply chain strategies could contribute to reducing these emissions. A broad spectrum of new supply chain strategy solutions was identified and, based on simulations of selected products, conclusions were drawn and the advantages and disadvantages of theoretical solutions were presented for individual cases. A critical analysis of the literature and simulation methods were used to illustrate the problem presented in this paper, to identify the factors causing greenhouse gas emissions and to draw conclusions in the form of proposals to redesign existing strategies, considering the factors determining the increase in pollution caused by the performed logistics processes. The results of the simulations and the literature analysis indicate that solutions related to the redesign of strategies must consider the specificity of the product and the nature of the chain. Not all proposed strategies are applicable to all chains, and each new strategy must be carefully considered and consider many factors. An important element to reduce the negative environmental impact of chains is a well-thought-out relationship with suppliers, a well-chosen and adapted logistics infrastructure, including means of transport. The presented solutions clearly indicate that the environmental aspect plays an increasingly important role in chain management and influences the applied chain strategies. However, reducing the environmental impact of a chain is not a revolutionary approach and an easy-to-implement strategy change, but a well-thought-out, long-term process that considers the specifics of the products, the possibilities of alternative sourcing and distribution modes, and the need to invest in logistics infrastructure to make it as environmentally neutral as possible.


Sign in / Sign up

Export Citation Format

Share Document