scholarly journals Analysis of Heart Disease Using Parallel and Sequential Ensemble Methods With Feature Selection Techniques

Author(s):  
Dhyan Chandra Yadav ◽  
Saurabh Pal

This paper has organized a heart disease-related dataset from UCI repository. The organized dataset describes variables correlations with class-level target variables. This experiment has analyzed the variables by different machine learning algorithms. The authors have considered prediction-based previous work and finds some machine learning algorithms did not properly work or do not cover 100% classification accuracy with overfitting, underfitting, noisy data, residual errors on base level decision tree. This research has used Pearson correlation and chi-square features selection-based algorithms for heart disease attributes correlation strength. The main objective of this research to achieved highest classification accuracy with fewer errors. So, the authors have used parallel and sequential ensemble methods to reduce above drawback in prediction. The parallel and serial ensemble methods were organized by J48 algorithm, reduced error pruning, and decision stump algorithm decision tree-based algorithms. This paper has used random forest ensemble method for parallel randomly selection in prediction and various sequential ensemble methods such as AdaBoost, Gradient Boosting, and XGBoost Meta classifiers. In this paper, the experiment divides into two parts: The first part deals with J48, reduced error pruning and decision stump and generated a random forest ensemble method. This parallel ensemble method calculated high classification accuracy 100% with low error. The second part of the experiment deals with J48, reduced error pruning, and decision stump with three sequential ensemble methods, namely AdaBoostM1, XG Boost, and Gradient Boosting. The XG Boost ensemble method calculated better results or high classification accuracy and low error compare to AdaBoostM1 and Gradient Boosting ensemble methods. The XG Boost ensemble method calculated 98.05% classification accuracy, but random forest ensemble method calculated high classification accuracy 100% with low error.

Author(s):  
Zulqarnain Khokhar ◽  
◽  
Murtaza Ahmed Siddiqi ◽  

Wi-Fi based indoor positioning with the help of access points and smart devices have become an integral part in finding a device or a person’s location. Wi-Fi based indoor localization technology has been among the most attractive field for researchers for a number of years. In this paper, we have presented Wi-Fi based in-door localization using three different machine-learning techniques. The three machine learning algorithms implemented and compared are Decision Tree, Random Forest and Gradient Boosting classifier. After making a fingerprint of the floor based on Wi-Fi signals, mentioned algorithms were used to identify device location at thirty different positions on the floor. Random Forest and Gradient Boosting classifier were able to identify the location of the device with accuracy higher than 90%. While Decision Tree was able to identify the location with accuracy a bit higher than 80%.


2021 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Kieu Anh Nguyen ◽  
Walter Chen ◽  
Bor-Shiun Lin ◽  
Uma Seeboonruang

Although machine learning has been extensively used in various fields, it has only recently been applied to soil erosion pin modeling. To improve upon previous methods of quantifying soil erosion based on erosion pin measurements, this study explored the possible application of ensemble machine learning algorithms to the Shihmen Reservoir watershed in northern Taiwan. Three categories of ensemble methods were considered in this study: (a) Bagging, (b) boosting, and (c) stacking. The bagging method in this study refers to bagged multivariate adaptive regression splines (bagged MARS) and random forest (RF), and the boosting method includes Cubist and gradient boosting machine (GBM). Finally, the stacking method is an ensemble method that uses a meta-model to combine the predictions of base models. This study used RF and GBM as the meta-models, decision tree, linear regression, artificial neural network, and support vector machine as the base models. The dataset used in this study was sampled using stratified random sampling to achieve a 70/30 split for the training and test data, and the process was repeated three times. The performance of six ensemble methods in three categories was analyzed based on the average of three attempts. It was found that GBM performed the best among the ensemble models with the lowest root-mean-square error (RMSE = 1.72 mm/year), the highest Nash-Sutcliffe efficiency (NSE = 0.54), and the highest index of agreement (d = 0.81). This result was confirmed by the spatial comparison of the absolute differences (errors) between model predictions and observations using GBM and RF in the study area. In summary, the results show that as a group, the bagging method and the boosting method performed equally well, and the stacking method was third for the erosion pin dataset considered in this study.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Faizan Ullah ◽  
Qaisar Javaid ◽  
Abdu Salam ◽  
Masood Ahmad ◽  
Nadeem Sarwar ◽  
...  

Ransomware (RW) is a distinctive variety of malware that encrypts the files or locks the user’s system by keeping and taking their files hostage, which leads to huge financial losses to users. In this article, we propose a new model that extracts the novel features from the RW dataset and performs classification of the RW and benign files. The proposed model can detect a large number of RW from various families at runtime and scan the network, registry activities, and file system throughout the execution. API-call series was reutilized to represent the behavior-based features of RW. The technique extracts fourteen-feature vector at runtime and analyzes it by applying online machine learning algorithms to predict the RW. To validate the effectiveness and scalability, we test 78550 recent malign and benign RW and compare with the random forest and AdaBoost, and the testing accuracy is extended at 99.56%.


2021 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Sajad Yousefi

Introduction: Heart disease is often associated with conditions such as clogged arteries due to the sediment accumulation which causes chest pain and heart attack. Many people die due to the heart disease annually. Most countries have a shortage of cardiovascular specialists and thus, a significant percentage of misdiagnosis occurs. Hence, predicting this disease is a serious issue. Using machine learning models performed on multidimensional dataset, this article aims to find the most efficient and accurate machine learning models for disease prediction.Material and Methods: Several algorithms were utilized to predict heart disease among which Decision Tree, Random Forest and KNN supervised machine learning are highly mentioned. The algorithms are applied to the dataset taken from the UCI repository including 294 samples. The dataset includes heart disease features. To enhance the algorithm performance, these features are analyzed, the feature importance scores and cross validation are considered.Results: The algorithm performance is compared with each other, so that performance based on ROC curve and some criteria such as accuracy, precision, sensitivity and F1 score were evaluated for each model. As a result of evaluation, Accuracy, AUC ROC are 83% and 99% respectively for Decision Tree algorithm. Logistic Regression algorithm with accuracy and AUC ROC are 88% and 91% respectively has better performance than other algorithms. Therefore, these techniques can be useful for physicians to predict heart disease patients and prescribe them correctly.Conclusion: Machine learning technique can be used in medicine for analyzing the related data collections to a disease and its prediction. The area under the ROC curve and evaluating criteria related to a number of classifying algorithms of machine learning to evaluate heart disease and indeed, the prediction of heart disease is compared to determine the most appropriate classification. As a result of evaluation, better performance was observed in both Decision Tree and Logistic Regression models.


Author(s):  
Harsha A K

Abstract: Since the advent of encryption, there has been a steady increase in malware being transmitted over encrypted networks. Traditional approaches to detect malware like packet content analysis are inefficient in dealing with encrypted data. In the absence of actual packet contents, we can make use of other features like packet size, arrival time, source and destination addresses and other such metadata to detect malware. Such information can be used to train machine learning classifiers in order to classify malicious and benign packets. In this paper, we offer an efficient malware detection approach using classification algorithms in machine learning such as support vector machine, random forest and extreme gradient boosting. We employ an extensive feature selection process to reduce the dimensionality of the chosen dataset. The dataset is then split into training and testing sets. Machine learning algorithms are trained using the training set. These models are then evaluated against the testing set in order to assess their respective performances. We further attempt to tune the hyper parameters of the algorithms, in order to achieve better results. Random forest and extreme gradient boosting algorithms performed exceptionally well in our experiments, resulting in area under the curve values of 0.9928 and 0.9998 respectively. Our work demonstrates that malware traffic can be effectively classified using conventional machine learning algorithms and also shows the importance of dimensionality reduction in such classification problems. Keywords: Malware Detection, Extreme Gradient Boosting, Random Forest, Feature Selection.


2020 ◽  
Author(s):  
Xueyan Li ◽  
Genshan Ma ◽  
Xiaobo Qian ◽  
Yamou Wu ◽  
Xiaochen Huang ◽  
...  

Abstract Background: We aimed to assess the performance of machine learning algorithms for the prediction of risk factors of postoperative ileus (POI) in patients underwent laparoscopic colorectal surgery for malignant lesions. Methods: We conducted analyses in a retrospective observational study with a total of 637 patients at Suzhou Hospital of Nanjing Medical University. Four machine learning algorithms (logistic regression, decision tree, random forest, gradient boosting decision tree) were considered to predict risk factors of POI. The total cases were randomly divided into training and testing data sets, with a ratio of 8:2. The performance of each model was evaluated by area under receiver operator characteristic curve (AUC), precision, recall and F1-score. Results: The morbidity of POI in this study was 19.15% (122/637). Gradient boosting decision tree reached the highest AUC (0.76) and was the best model for POI risk prediction. In addition, the results of the importance matrix of gradient boosting decision tree showed that the five most important variables were time to first passage of flatus, opioids during POD3, duration of surgery, height and weight. Conclusions: The gradient boosting decision tree was the optimal model to predict the risk of POI in patients underwent laparoscopic colorectal surgery for malignant lesions. And the results of our study could be useful for clinical guidelines in POI risk prediction.


2022 ◽  
pp. 383-393
Author(s):  
Lokesh M. Giripunje ◽  
Tejas Prashant Sonar ◽  
Rohit Shivaji Mali ◽  
Jayant C. Modhave ◽  
Mahesh B. Gaikwad

Risk because of heart disease is increasing throughout the world. According to the World Health Organization report, the number of deaths because of heart disease is drastically increasing as compared to other diseases. Multiple factors are responsible for causing heart-related issues. Many approaches were suggested for prediction of heart disease, but none of them were satisfactory in clinical terms. Heart disease therapies and operations available are so costly, and following treatment, heart disease is also costly. This chapter provides a comprehensive survey of existing machine learning algorithms and presents comparison in terms of accuracy, and the authors have found that the random forest classifier is the most accurate model; hence, they are using random forest for further processes. Deployment of machine learning model using web application was done with the help of flask, HTML, GitHub, and Heroku servers. Webpages take input attributes from the users and gives the output regarding the patient heart condition with accuracy of having coronary heart disease in the next 10 years.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2927
Author(s):  
Jiyeong Hong ◽  
Seoro Lee ◽  
Joo Hyun Bae ◽  
Jimin Lee ◽  
Woon Ji Park ◽  
...  

Predicting dam inflow is necessary for effective water management. This study created machine learning algorithms to predict the amount of inflow into the Soyang River Dam in South Korea, using weather and dam inflow data for 40 years. A total of six algorithms were used, as follows: decision tree (DT), multilayer perceptron (MLP), random forest (RF), gradient boosting (GB), recurrent neural network–long short-term memory (RNN–LSTM), and convolutional neural network–LSTM (CNN–LSTM). Among these models, the multilayer perceptron model showed the best results in predicting dam inflow, with the Nash–Sutcliffe efficiency (NSE) value of 0.812, root mean squared errors (RMSE) of 77.218 m3/s, mean absolute error (MAE) of 29.034 m3/s, correlation coefficient (R) of 0.924, and determination coefficient (R2) of 0.817. However, when the amount of dam inflow is below 100 m3/s, the ensemble models (random forest and gradient boosting models) performed better than MLP for the prediction of dam inflow. Therefore, two combined machine learning (CombML) models (RF_MLP and GB_MLP) were developed for the prediction of the dam inflow using the ensemble methods (RF and GB) at precipitation below 16 mm, and the MLP at precipitation above 16 mm. The precipitation of 16 mm is the average daily precipitation at the inflow of 100 m3/s or more. The results show the accuracy verification results of NSE 0.857, RMSE 68.417 m3/s, MAE 18.063 m3/s, R 0.927, and R2 0.859 in RF_MLP, and NSE 0.829, RMSE 73.918 m3/s, MAE 18.093 m3/s, R 0.912, and R2 0.831 in GB_MLP, which infers that the combination of the models predicts the dam inflow the most accurately. CombML algorithms showed that it is possible to predict inflow through inflow learning, considering flow characteristics such as flow regimes, by combining several machine learning algorithms.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Peter Appiahene ◽  
Yaw Marfo Missah ◽  
Ussiph Najim

The financial crisis that hit Ghana from 2015 to 2018 has raised various issues with respect to the efficiency of banks and the safety of depositors’ in the banking industry. As part of measures to improve the banking sector and also restore customers’ confidence, efficiency and performance analysis in the banking industry has become a hot issue. This is because stakeholders have to detect the underlying causes of inefficiencies within the banking industry. Nonparametric methods such as Data Envelopment Analysis (DEA) have been suggested in the literature as a good measure of banks’ efficiency and performance. Machine learning algorithms have also been viewed as a good tool to estimate various nonparametric and nonlinear problems. This paper presents a combined DEA with three machine learning approaches in evaluating bank efficiency and performance using 444 Ghanaian bank branches, Decision Making Units (DMUs). The results were compared with the corresponding efficiency ratings obtained from the DEA. Finally, the prediction accuracies of the three machine learning algorithm models were compared. The results suggested that the decision tree (DT) and its C5.0 algorithm provided the best predictive model. It had 100% accuracy in predicting the 134 holdout sample dataset (30% banks) and a P value of 0.00. The DT was followed closely by random forest algorithm with a predictive accuracy of 98.5% and a P value of 0.00 and finally the neural network (86.6% accuracy) with a P value 0.66. The study concluded that banks in Ghana can use the result of this study to predict their respective efficiencies. All experiments were performed within a simulation environment and conducted in R studio using R codes.


2016 ◽  
Vol 26 (03) ◽  
pp. 1750007 ◽  
Author(s):  
S. Dinakaran ◽  
P. Ranjit Jeba Thangaiah

This article introduces a novel ensemble method named eAdaBoost (Effective Adaptive Boosting) is a meta classifier which is developed by enhancing the existing AdaBoost algorithm and to handle the time complexity and also to produce the best classification accuracy. The eAdaBoost reduces the error rate when compared with the existing methods and generates the best accuracy by reweighing each feature for further process. The comparison results of an extensive experimental evaluation of the proposed method are explained using the UCI machine learning repository datasets. The accuracy of the classifiers and statistical test comparisons are made with various boosting algorithms. The proposed eAdaBoost has been also implemented with different decision tree classifiers like C4.5, Decision Stump, NB Tree and Random Forest. The algorithm has been computed with various dataset, with different weight thresholds and the performance is analyzed. The proposed method produces better results using random forest and NB tree as base classifier than the decision stump and C4.5 classifiers for few datasets. The eAdaBoost gives better classification accuracy, and prediction accuracy, and execution time is also less when compared with other classifiers.


Sign in / Sign up

Export Citation Format

Share Document