The History and Development of Quantitative Structure-Activity Relationships (QSARs)

Author(s):  
John C. Dearden

It is widely accepted that modern QSAR began in the early 1960s. However, as long ago as 1816 scientists were making predictions about physical and chemical properties. The first investigations into the correlation of biological activities with physicochemical properties such as molecular weight and aqueous solubility began in 1841, almost 60 years before the important work of Overton and Meyer linking aquatic toxicity to lipid-water partitioning. Throughout the 20th century QSAR progressed, though there were many lean years. In 1962 came the seminal work of Corwin Hansch and co-workers, which stimulated a huge interest in the prediction of biological activities. Initially that interest lay largely within medicinal chemistry and drug design, but in the 1970s and 1980s, with increasing ecotoxicological concerns, QSAR modelling of environmental toxicities began to grow, especially once regulatory authorities became involved. Since then QSAR has continued to expand, with over 1400 publications annually from 2011 onwards.

Oncology ◽  
2017 ◽  
pp. 67-117 ◽  
Author(s):  
John C. Dearden

It is widely accepted that modern QSAR began in the early 1960s. However, as long ago as 1816 scientists were making predictions about physical and chemical properties. The first investigations into the correlation of biological activities with physicochemical properties such as molecular weight and aqueous solubility began in 1841, almost 60 years before the important work of Overton and Meyer linking aquatic toxicity to lipid-water partitioning. Throughout the 20th century QSAR progressed, though there were many lean years. In 1962 came the seminal work of Corwin Hansch and co-workers, which stimulated a huge interest in the prediction of biological activities. Initially that interest lay largely within medicinal chemistry and drug design, but in the 1970s and 1980s, with increasing ecotoxicological concerns, QSAR modelling of environmental toxicities began to grow, especially once regulatory authorities became involved. Since then QSAR has continued to expand, with over 1400 publications annually from 2011 onwards.


2019 ◽  
Vol 41 (6) ◽  
pp. 1046-1046
Author(s):  
Omar A Shareef Omar A Shareef ◽  
Said A Said and Ali Y Abdulrazaq Said A Said and Ali Y Abdulrazaq

The wide biological activities of flavanones are mainly depends on their physical and chemical properties, thus a number of substituted 2-Hydroxy chalcones have been synthesized, and their isomerization to their corresponding flavanones was studied. In order to determine the rate constant, kinetic experiments were performed using HPLC technique in (9:1) (CH3CN:H2O) medium at different temperature (298-318) K. The obtained results were interpreted by four steps mechanism, which considered the existence of phenoxide ion as the key intermediate. This study performed with a pseudo first order ( reaction in which the rate for the studied compounds follow the sequence 5 andgt; 2 andgt; 1 andgt; 4 andgt; 3, the activation energy have the same sequence for these compounds .The effect of substituents on the rate showed that electronic and steric factors play reasonable role on the stability of the product .


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5666
Author(s):  
Valéria Verebová ◽  
Jiří Beneš ◽  
Jana Staničová

Photosensitive compounds found in herbs have been reported in recent years as having a variety of interesting medicinal and biological activities. In this review, we focus on photosensitizers such as hypericin and its model compounds emodin, quinizarin, and danthron, which have antiviral, antifungal, antineoplastic, and antitumor effects. They can be utilized as potential agents in photodynamic therapy, especially in photodynamic therapy (PDT) for cancer. We aimed to give a comprehensive summary of the physical and chemical properties of these interesting molecules, emphasizing their mechanism of action in relation to their different interactions with biomacromolecules, specifically with DNA.


Author(s):  
Zarish Fatima ◽  
Sameer Quazi ◽  
Shreelaxmi Gavas ◽  
Tomasz Karpiński

The advancement in the production and usage of the cerium oxide nanoparticles have diverted the attention of scientists towards their usage in medical field and therapeutic usage. The clinical usage of these Nano ceria is based on their ability to moderate the oxidative stress and this is only because of their ability to change their valent state from +3 to +4 which makes them ideal for scavenging radicals for use in a number of systemic and neurodegenerative disorders. This review aims to synthesize the basic methods used for the synthesis of nanoparticles along with the use of ligand, stabilizing agent and other components. This review also concludes that how various physical and chemical properties of nanoparticles effect the basic biological activities such as antimicrobial activity, cytotoxicity and many others. However, during the standardization, some of the physiochemical properties, methods used for preparation and catalytic abilities must be taken into account.


Author(s):  
Rukhsana Tabassum ◽  
Muhammad Ashfaq ◽  
Hiroyuki Oku

Abstract:: Quinoline derivatives are considered as broad spectrum pharmacological compounds that exhibit wide range of biological activities. Integration of quinoline moiety can improve its physical and chemical properties and also pharmacological behavior. Due to its wide range of pharmaceutical applications it is very popular compound to design new drugs for treatment of multiple diseases like cancer, dengue fever, malaria, tuberculosis, fungal infections, AIDS, Alzheimer’s disease and diabetes . In this review our major focus is to pay attention on biological activities of quinoline compounds in treatment of these diseases such as, anti-viral, anti-cancer, anti-malarial, anti-bacterial, anti-fungal, anti-tubercular and anti-diabetic.


2021 ◽  
Vol 3 (1) ◽  
pp. 1-31
Author(s):  
Benjamin Gabriel Poulson ◽  
Qana A. Alsulami ◽  
Abeer Sharfalddin ◽  
Emam. F. El Agammy ◽  
Fouzi Mouffouk ◽  
...  

Due to their unique structural, physical and chemical properties, cyclodextrins and their derivatives have been of great interest to scientists and researchers in both academia and industry for over a century. Many of the industrial applications of cyclodextrins have arisen from their ability to encapsulate, either partially or fully, other molecules, especially organic compounds. Cyclodextrins are non-toxic oligopolymers of glucose that help to increase the solubility of organic compounds with poor aqueous solubility, can mask odors from foul-smelling compounds, and have been widely studied in the area of drug delivery. In this review, we explore the structural and chemical properties of cyclodextrins that give rise to this encapsulation (i.e., the formation of inclusion complexes) ability. This review is unique from others written on this subject because it provides powerful insights into factors that affect cyclodextrin encapsulation. It also examines these insights in great detail. Later, we provide an overview of some industrial applications of cyclodextrins, while emphasizing the role of encapsulation in these applications. We strongly believe that cyclodextrins will continue to garner interest from scientists for many years to come, and that novel applications of cyclodextrins have yet to be discovered.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 620
Author(s):  
Yanping Li ◽  
Yuting Zheng ◽  
Ye Zhang ◽  
Yuanyuan Yang ◽  
Peiyao Wang ◽  
...  

Brown algae (Phaeophyceae) have been consumed by humans for hundreds of years. Current studies have shown that brown algae are rich sources of bioactive compounds with excellent nutritional value, and are considered functional foods with health benefits. Polysaccharides are the main constituents of brown algae; their diverse structures allow many unique physical and chemical properties that help to moderate a wide range of biological activities, including immunomodulation, antibacterial, antioxidant, prebiotic, antihypertensive, antidiabetic, antitumor, and anticoagulant activities. In this review, we focus on the major polysaccharide components in brown algae: the alginate, laminarin, and fucoidan. We explore how their structure leads to their health benefits, and their application prospects in functional foods and pharmaceuticals. Finally, we summarize the latest developments in applied research on brown algae polysaccharides.


Foods ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 304 ◽  
Author(s):  
Samee Ullah ◽  
Anees Ahmed Khalil ◽  
Faryal Shaukat ◽  
Yuanda Song

In the recent era, bioactive compounds from plants have received great attention because of their vital health-related activities, such as antimicrobial activity, antioxidant activity, anticoagulant activity, anti-diabetic activity, UV protection, antiviral activity, hypoglycemia, etc. Previous studies have already shown that polysaccharides found in plants are not likely to be toxic. Based on these inspirational comments, most research focused on the isolation, identification, and bioactivities of polysaccharides. A large number of biologically active polysaccharides have been isolated with varying structural and biological activities. In this review, a comprehensive summary is provided of the recent developments in the physical and chemical properties as well as biological activities of polysaccharides from a number of important natural sources, such as wheat bran, orange peel, barely, fungi, algae, lichen, etc. This review also focused on biomedical applications of polysaccharides. The contents presented in this review will be useful as a reference for future research as well as for the extraction and application of these bioactive polysaccharides as a therapeutic agent.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Sign in / Sign up

Export Citation Format

Share Document