Tribology of Electroless Ni-P Coating Under Lubricated Condition

Author(s):  
Arkadeb Mukhopadhyay ◽  
Santanu Duari ◽  
Tapan Kr. Barman ◽  
Prasanta Sahoo

Friction and wear behavior of electroless Ni-P coating under lubricated condition is studied on a block – on – roller type tribo – tester by varying applied normal load, sliding speed of the roller and sliding time. Electroless Ni-P coating is deposited on AISI 1040 steel substrates. Surface morphology, phase transformation, composition and analysis of wear mechanism are done using scanning electron microscope, X-ray diffraction techniques and energy dispersive X-ray analysis respectively. Based on Taguchi experimental data, a multiple regression model is fitted to relate the coefficient of friction and wear depth with the tribo – testing parameters. Three dimensional surface and contour plots are generated to analyze the trends in variation of the response variables with the interaction of the process parameters (load, speed and time). Significant improvement in wear depth and COF of electroless Ni-P coating is observed under lubrication. Optimization of wear depth and coefficient of friction is conducted using genetic algorithm.

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Supriyo Roy ◽  
Prasanta Sahoo

The present experimental investigation deals with the deposition of electroless Ni-P-W coating on mild steel substrate and optimization of tribological parameters for better tribological behaviour like minimization of wear depth and coefficient of friction. Three tribological test parameters, namely, load, speed, and time, are optimized for minimum friction and wear of the coating. Friction and wear tests are carried out in a multitribotester using block on roller configuration under dry conditions. Taguchi based grey relational analysis is employed for optimization of this multiple response problem using L27 orthogonal array. Analysis of variance shows that load, speed, time, and interaction between load and speed have significant influence on controlling the friction and wear behavior of Ni-P-W coating. It is observed that wear mechanism is mild adhesive in nature. The structural morphology, composition, and phase structure of the coating are studied with the help of scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD), respectively.


Author(s):  
Santanu Duari ◽  
Arkadeb Mukhopadhyay ◽  
Tapan Kumar Barman ◽  
Prasanta Sahoo

The present chapter aims to determine optimal tribo-testing condition for minimum coefficient of friction and wear depth of electroless Ni-P, Ni-P-W and Ni-P-Cu coatings under lubrication using grey relational analysis. Electroless Ni-P, Ni-P-W and Ni-P-Cu coatings are deposited on AISI 1040 steel substrates. They are heat treated at suitable temperatures to improve their hardness. Coating characterization is done using scanning electron microscope, energy dispersive X-Ray analysis and X-Ray diffraction techniques. Typical nodulated surface morphology is observed in the scanning electron micrographs of all the three coatings. Phase transformation on heat treating the deposits is captured through the use of X-Ray diffraction technique. Vicker's microhardness of the coatings in their as-deposited and heat treated condition is determined. Ni-P-W coatings are seen to exhibit the highest microhardness. Friction and wear tests under lubricated condition are carried out following Taguchi's experimental design principle. Finally, the predominating wear mechanism of the coatings is discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rama Krishna S. ◽  
Patta Lokanadham

Purpose The purpose of the present paper aims to, study the coefficient of friction and wear behavior of nickel based super alloys used in manufacturing of gas and steam turbine blades. In present paper, parametric study focuses on normal load, dry sliding velocity and contact temperature influence on coefficient of friction and wear of a nickel based super alloy material. Design/methodology/approach Experimental investigation is carried out to know the effect of varying load at constant sliding velocity and varying sliding velocity at constant load on coefficient of friction and wear behavior of nickel based super alloy material. The experiments are carried out on a nickel based super alloy material using pin on disk apparatus by load ranging from 30 N to 90 N and sliding velocity from 1.34 m/s to 2.67 m/s. The contact temperature between pin and disk is measured using K-type thermocouple for all test conditions to know effect of contact temperature on coefficient of friction and wear behavior of nickel based super alloy material. Analytical calculations are carried out to find wear rate and wear coefficient of the test specimen and are compared with experimental results for validation of experimental setup. Regression equations are generated from experimental results to estimate coefficient of friction and wear in the range of test conditions. Findings From the experimental results, it is observed that by increasing the normal load or sliding velocity, the contact temperature between the pin and disk increases, the coefficient of friction decreases and wear increases. Analysis of variance (ANOVA) is used to study the influence of individual parameters like normal load, dry sliding speed and sliding distance on the coefficient of friction and wear of nickel based super alloy material. Originality/value This is the first time to study effect of contact temperature on the coefficient of friction and wear behavior of nickel-based super alloy used for gas and steam turbine blades. Separate regression equations have been developed to determine the coefficient of friction and wear for the entire range of speed of gas turbine blades made of nickel based super alloy. The regression equations are also validated against experimental results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Supriyo Roy ◽  
Prasanta Sahoo

This paper aims to present an experimental investigation for optimum tribological behavior (wear depth and coefficient of friction) of electroless Ni-P-Cu coatings based on four process parameters using artificial bee colony algorithm. Experiments are carried out by utilizing the combination of three coating process parameters, namely, nickel sulphate, sodium hypophosphite, and copper sulphate, and the fourth parameter is postdeposition heat treatment temperature. The design of experiment is based on the Taguchi L27 experimental design. After coating, measurement of wear and coefficient of friction of each heat-treated sample is done using a multitribotester apparatus with block-on-roller arrangement. Both friction and wear are found to increase with increase of source of nickel concentration and decrease with increase of source of copper concentration. Artificial bee colony algorithm is successfully employed to optimize the multiresponse objective function for both wear depth and coefficient of friction. It is found that, within the operating range, a lower value of nickel concentration, medium value of hypophosphite concentration, higher value of copper concentration, and higher value of heat treatment temperature are suitable for having minimum wear and coefficient of friction. The surface morphology, phase transformation behavior, and composition of coatings are also studied with the help of scanning electron microscopy, X-ray diffraction analysis, and energy dispersed X-ray analysis, respectively.


2021 ◽  
Vol 406 ◽  
pp. 229-239
Author(s):  
Mohamed Nabil Bachirbey ◽  
Mohammed Seyf Eddine Bougoffa ◽  
Chahrazed Benouali ◽  
Tahar Sayah

The present work aims at the study of the dry disc pion contact and the complex phenomenon of the wear as well as the sliding friction of our sample elaborated by a hot isotactic compression and the pion. This study consists in determining the coefficient of friction and the influence of the tribological parameters on this phenomenon as well as determining the loss of mass and the wear rate of study sample. In order to enhance the assurance of the validity of the results of tribological study of Ni-Cr-B-Si-C-W alloy in laboratories and compare that to the tribological conditions in reality and industries. This work presents the results of the new approach to compares the wear behavior of the sample between a theoretical study (tribometer)and another in service (a test bench) that reproduces approximately the same conditions as the tribometer (normal load, sliding speed and distance traveled) by measuring the loss of mass and wear rate.


Author(s):  
Mamoun Fellah ◽  
Linda Aissani

The aim of the present research was focused on the study of the effect of replacing vanadium by niobium and iron on the tribological behavior of Hot Isostatic Pressed (HIPed) titanium alloy (Ti-6Al-4V) biomaterial, using a ball-on-disk type Oscillating tribometer, under wet conditions using physiological solution conditions (Ringer solution) in accordance with the ASTMG 99, ISO 7148-1:2012, and ASTM G 133–95 standards. The tests were carried out under a normal load of 6 N, with an AISI 52100 grade steel ball as a counter face. The morphological changes and structural evolution of the nanoparticle powders using different milling times (2, 6, 12 and 18 h) were studied. The morphological characterization indicated that the particle and crystallite size continuously decreases with increasing milling time to reach the lowest value of 4 nm at 18 hours milling. The friction coefficient and wear rate were lower in the samples milled at 18 h (0.226, 0.297 and 0.423) and (0.66 x10-2, 0.87x10-2 and 1.51x10-2 µm3.N-1.µm-1) for Ti-6Al-4Fe, Ti-6Al-4Nb and Ti-6Al-4V, respectively. This improvement in friction and wear resistance is attributed to the grain refinement at 18 hour milling. The Ti-6Al-4Fe samples showed good tribological performance for all milling times


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Vaibhav Nemane ◽  
Satyajit Chatterjee

Abstract Electroless Ni–B–W coating is deposited on low carbon steel in an alkaline sodium borohydride-reduced electroless bath. The mechanical and tribological properties of such coatings are much necessary to be assessed to carry out application-based studies. The present work focuses mainly on the evaluation of hardness and fracture toughness of electroless Ni–B–W coatings using a scratch tester. Coating's response toward scratching is also studied thoroughly. The characteristic short-range order present in its lattice structure causes the generation of a specific behavioral pattern. Furthermore, a linear sliding wear test is carried out on coatings' surface to analyze the wear behavior at different loading conditions. The specific wear rate is observed to be minimum at a normal load of 22.5 N against Si3N4 counterbody. The patterns of tribological behavior of the coating at different load values are examined from the worn surface morphologies. But before embarking on the scratch and sliding wear tests, the synthesized coatings are characterized under field emission scanning electron microscope and X-ray diffraction in an exhaustive manner. The growth rates with respect to time and the changes in morphological aspects of the coating are also evaluated. The present study establishes electroless Ni–B–W deposits as a suitable option for protecting mechanical components against wear.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1589 ◽  
Author(s):  
Mazin Tahir ◽  
Abdul Samad Mohammed ◽  
Umar Azam Muhammad

The effect of various operational factors, such as sliding speed, normal load and temperature on the tribological properties of Date palm fruit syrup (DPFS) as an environmentally friendly lubricant, is investigated. Ball-on-disc wear tests are conducted on mild steel samples in the presence of DPFS as a lubricant under different conditions and the coefficient of friction and wear rate are measured. Scanning electron microscopy, stylus profilometry, and Fourier transform infrared spectroscopy are used to evaluate the wear tracks to determine the underlying wear mechanisms. Results showed that DPFS has excellent tribological properties in terms of low friction and low wear rates making it a potential candidate to be used as a lubricant in tribological applications.


Author(s):  
Kali Dass ◽  
SR Chauhan ◽  
Bharti Gaur

An experimental study has been carried out to investigate the mechanical and tribological characteristics of chopped carbon fiber (CCF) reinforced epoxy composites filled with nano-Al2O3 particulates, as a function of fiber and filler contents. The experiments were conducted using a pin-on-disc wear test apparatus under dry sliding conditions. The coefficient of friction and specific wear rate of these composites was determined as a function of applied normal load, sliding velocity, sliding distance, and reinforcement content. The tensile, flexural, and compression strengths of ortho cresol novalac epoxy and chopped carbon fiber (OCNE/CCF) filled composites are found to be within the ranges of 48–58.54 MPa, 115–156.56 MPa, and 48–61.15 MPa. Whereas the tensile, flexural, and compression strengths of OCNE/CCF/Al2O3-filled composites are found to be within the ranges of 96–110 MPa, 176–204.66 MPa, and 72–85.65 MPa, respectively. It has been observed that the coefficient of friction decreases and specific wear rate increases with increase in the applied normal loads. Further increases in the fiber (6 wt%) and particle (3 wt%) contents in the epoxy matrix resulted in a decrease of both the mechanical and tribological properties, but remains above that of the CCF reinforced epoxy composites. The worn surfaces of composites were examined with scanning electron microscopy equipped with energy dispersion X-ray analyzer and X-ray diffraction analysis technique to investigate the wear mechanisms.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4886
Author(s):  
Agnieszka Lenart ◽  
Pawel Pawlus ◽  
Andrzej Dzierwa ◽  
Slawomir Wos ◽  
Rafal Reizer

Experiments were conducted using an Optimol SRV5 tester in lubricated friction conditions. Steel balls from 100Cr6 material of 60 HRC hardness were placed in contact with 42CrMo4 steel discs of 47 HRC hardness and diversified surface textures. Tests were carried out at a 25–40% relative humidity. The ball diameter was 10 mm, the amplitude of oscillations was set to 0.1 mm, and the frequency was set to 80 Hz. Tests were performed at smaller (45 N) and higher (100 N) normal loads and at smaller (30 °C) and higher (90 °C) temperatures. During each test, the normal load and temperature were kept constant. We found that the disc surface texture had significant effects on the friction and wear under lubricated conditions. When a lower normal load was applied, the coefficient of friction and wear volumes were smaller for bigger disc surface heights. However, for a larger normal load a higher roughness corresponded to a larger coefficient of friction.


Sign in / Sign up

Export Citation Format

Share Document