Study on Thermal Conductivity of Polyetheretherketone/Thermally Conductive Filler Composites

Author(s):  
Sung Ryong Kim ◽  
Dae Hoon Kim ◽  
Dong Ju Kim ◽  
Min Hyung Kim ◽  
Joung Man Park
Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 62 ◽  
Author(s):  
Boxi Xia ◽  
Aslan Miriyev ◽  
Cesar Trujillo ◽  
Neil Chen ◽  
Mark Cartolano ◽  
...  

The actuation of silicone/ethanol soft composite material-actuators is based on the phase change of ethanol upon heating, followed by the expansion of the whole composite, exhibiting high actuation stress and strain. However, the low thermal conductivity of silicone rubber hinders uniform heating throughout the material, creating overheated damaged areas in the silicone matrix and accelerating ethanol evaporation. This limits the actuation speed and the total number of operation cycles of these thermally-driven soft actuators. In this paper, we showed that adding 8 wt.% of diamond nanoparticle-based thermally conductive filler increases the thermal conductivity (from 0.190 W/mK to 0.212 W/mK), actuation speed and amount of operation cycles of silicone/ethanol actuators, while not affecting the mechanical properties. We performed multi-cyclic actuation tests and showed that the faster and longer operation of 8 wt.% filler material-actuators allows collecting enough reliable data for computational methods to model further actuation behavior. We successfully implemented a long short-term memory (LSTM) neural network model to predict the actuation force exerted in a uniform multi-cyclic actuation experiment. This work paves the way for a broader implementation of soft thermally-driven actuators in various robotic applications.


2007 ◽  
Vol 124-126 ◽  
pp. 1079-1082 ◽  
Author(s):  
Sung Ryong Kim ◽  
Dae Hoon Kim ◽  
Dong Ju Kim ◽  
Min Hyung Kim ◽  
Joung Man Park

Thermal properties of PEEK/silicon carbide(SiC) and PEEK/carbon fiber(CF) were investigated from ambient temperature up to 200°C measured by laser flash method. Thermal conductivity was increased from 0.29W/m-K without filler up to 2.4 W/m-K with at 50 volume % SiC and 3.1W/m-K with 40 volume % carbon fiber. Values from Nielsen theory that predicts thermal conductivity of two-phase system were compared to those obtained from experiment.


2011 ◽  
Vol 391-392 ◽  
pp. 282-286 ◽  
Author(s):  
Jun Peng Li ◽  
Shu Hua Qi ◽  
Fan Xie

A new kind of thermally conductive composites reinforced by glass fibers with boron nitride (BN) as thermally conductive filler was prepared in heat press molding. Thermal conductivity of the composites was found to increase with increasing in filler content. But impact strength and flexural strength reach the top point, 385.05KJ/m2 and 912.6481MPa, with content of 50wt% and 20wt% respectively. The thermal conductivity of 0.8385 W/mK was obtained at 50wt% filler content. Experimental dates show that mixed matrix of epoxy (EP) and polyimide (PI) displays high thermal stability and can improve thermal stability compared to pure epoxy obviously at 50wt% PI content. Additionally, the obtained composites possess high surface resistivity and volume resistivity, which are suitable for substrate materials.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1410 ◽  
Author(s):  
Youjin Kim ◽  
Jooheon Kim

Inspired by mussel adhesion proteins, boron nitride (BN) particles coated with homogeneous polydopamine (BNPDA) were prepared, and through an annealing process, a carbonized PDA layer on the surface of BN was obtained, which exhibited a nanocrystalline graphite-like structure. The effect of carbonization of PDA coating layer on BN particles was characterized by various analytical techniques including SEM, TEM, Raman spectroscopy, and XPS. When the resulting particles were used as a thermally conductive filler for polyvinyl alcohol (PVA) composite films, enhanced thermal conductivity was observed compared to raw BN composite due to the ordered structure and improved solubility in water. Furthermore, the homogeneous dispersion of the filler and excellent flexibility of the modified composite film with 21 wt % filler may be attributed to compatibility with the PVA chain. As the whole fabrication process did not use toxic chemicals (mainly water was used as the solvent), it may contribute to green and sustainable chemistry.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022001
Author(s):  
Wei Chen ◽  
Sheng Hu ◽  
RuiDun Zhao ◽  
Yine Xie ◽  
Hao Cao

Abstract Surface coating of damping paint is a common method to suppress structural vibration and reduce noise, but damping paint has poor thermal conductivity which limits it’ s application to transformers, reactors and other equipment that have high requirements for heat dissipation. In this paper, a new type of high thermal conductivity damping coating is prepared by emulsion polymerization, among which, a polyurethane emulsion with internal cross-linking structure and an acrylic emulsion with polymerization function are used as main agents, mica powder is used as the main damping function filler. By adjusting the proportion of non-metallic thermal conductive filler Al2O3 and thermal conductive fiber to explore the influence of different thermal conductive fillers on the thermal conductivity and damping performance of the damping coating. The paint is applied to aluminum and iron plates, and the sound insulation capacity is tested to study the influence of paint thickness, fiber addition, fiber type, viscoelasticity, and temperature aging on the sound insulation performance of damping sound insulation panels. The test results show that by adding thermally conductive filler Al2O3 and thermally conductive fibers, a thermally conductive network chain is formed inside the damping coating, which greatly improves the thermal conductivity of the coating while ensuring the damping performance and the effect of vibration and noise reduction.


2020 ◽  
pp. 089270572096564
Author(s):  
Xiao Wang ◽  
Hui Lu ◽  
Jun Chen

In this work, ultra-high molecular weight polyethylene (UHMWPE)/natural flake graphite (NG) polymer composites with the extraordinary high thermal conductivity were prepared by a facile mixed-heating powder method. Morphology observation and X-ray diffraction (XRD) tests revealed that the NG flakes could be more tightly coated on the surface of UHMWPE granules by mixed-heating process and align horizontally (perpendicular to the hot compression direction of composites). Laser flash thermal analyzer (LFA) demonstrated that the thermal conductivity (TC) of composites with 21.6 vol% of NG reached 19.87 W/(m·K) and 10.67 W/(m·K) in the in-plane and through-plane direction, respectively. Application experiment further demonstrated that UHMWPE/NG composites had strong capability to dissipate the heat as heat spreader. The obtained results provided a valuable basis for fabricating high thermal conductive composites which can act as advanced thermal management materials.


2020 ◽  
pp. 096739112097811
Author(s):  
Munjula Siva Kumar ◽  
Santosh Kumar ◽  
Krushna Gouda ◽  
Sumit Bhowmik

The polymer composite material’s thermomechanical properties with fiber as reinforcement material have been widely studied in the last few decades. However, these fiber-based polymer composites exhibit problems such as fiber orientation, delamination, fiber defect along the length and bonding are the matter of serious concern in order to improve the thermomechanical properties and obtain isotropic material behavior. In the present investigation filler-based composite material is developed using natural hemp and high thermal conductive silver nanoparticles (SNP) and combination of dual fillers in neat epoxy polymer to investigate the synergetic influence. Among various organic natural fillers hemp filler depicts good crystallinity characteristics, so selected as a biocompatible filler along with SNP conductive filler. For enhancing their thermal conductivity and mechanical properties, hybridization of hemp filler along with silver nanoparticles are conducted. The composites samples are prepared with three different combinations such as sole SNP, sole hemp and hybrid (SNP and hemp) are prepared to understand their solo and hybrid combination. From results it is examined that, chemical treated hemp filler has to maximized its relative properties and showed, 40% weight % of silver nanoparticles composites have highest thermal conductivity 1.00 W/mK followed with hemp filler 0.55 W/mK and hybrid 0.76 W/mK composites at 7.5% of weight fraction and 47.5% of weight fraction respectively. The highest tensile strength is obtained for SNP composite 32.03 MPa and highest young’s modulus is obtained for hybrid composites. Dynamic mechanical analysis is conducted to find their respective storage modulus and glass transition temperature and that, the recorded maximum for SNP composites with 3.23 GPa and 90°C respectively. Scanning electron microscopy examinations clearly illustrated that formation of thermal conductivity chain is significant with nano and micro fillers incorporation.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1120
Author(s):  
Virginija Skurkyte-Papieviene ◽  
Ausra Abraitiene ◽  
Audrone Sankauskaite ◽  
Vitalija Rubeziene ◽  
Julija Baltusnikaite-Guzaitiene

Phase changing materials (PCMs) microcapsules MPCM32D, consisting of a polymeric melamine-formaldehyde (MF) resin shell surrounding a paraffin core (melting point: 30–32 °C), have been modified by introducing thermally conductive additives on their outer shell surface. As additives, multiwall carbon nanotubes (MWCNTs) and poly (3,4-ethylenedioxyoxythiophene) poly (styrene sulphonate) (PEDOT: PSS) were used in different parts by weight (1 wt.%, 5 wt.%, and 10 wt.%). The main aim of this modification—to enhance the thermal performance of the microencapsulated PCMs intended for textile applications. The morphologic analysis of the newly formed coating of MWCNTs or PEDOT: PSS microcapsules shell was observed by SEM. The heat storage and release capacity were evaluated by changing microcapsules MPCM32D shell modification. In order to evaluate the influence of the modified MF outer shell on the thermal properties of paraffin PCM, a thermal conductivity coefficient (λ) of these unmodified and shell-modified microcapsules was also measured by the comparative method. Based on the identified optimal parameters of the thermal performance of the tested PCM microcapsules, a 3D warp-knitted spacer fabric from PET was treated with a composition containing 5 wt.% MWCNTs or 5 wt.% PEDOT: PSS shell-modified microcapsules MPCM32D and acrylic resin binder. To assess the dynamic thermal behaviour of the treated fabric samples, an IR heating source and IR camera were used. The fabric with 5 wt.% MWCNTs or 5 wt.% PEDOT: PSS in shell-modified paraffin microcapsules MPCM32D revealed much faster heating and significantly slower cooling compared to the fabric treated with the unmodified ones. The thermal conductivity of the investigated fabric samples with modified microcapsules MPCM32D has been improved in comparison to the fabric samples with unmodified ones. That confirms the positive influence of using thermally conductive enhancing additives for the heat transfer rate within the textile sample containing these modified paraffin PCM microcapsules.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1302
Author(s):  
Younggi Hong ◽  
Munju Goh

Epoxy resin (EP) is one of the most famous thermoset materials. In general, because EP has a three-dimensional random network, it possesses thermal properties similar to those of a typical heat insulator. Recently, there has been substantial interest in controlling the network structure of EP to create new functionalities. Indeed, the modified EP, represented as liquid crystalline epoxy (LCE), is considered promising for producing novel functionalities, which cannot be obtained from conventional EPs, by replacing the random network structure with an oriented one. In this paper, we review the current progress in the field of LCEs and their application to highly thermally conductive composite materials.


Author(s):  
Chongjian Zhou ◽  
Yong Kyu Lee ◽  
Yuan Yu ◽  
Sejin Byun ◽  
Zhong-Zhen Luo ◽  
...  

AbstractThermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m–1 K–1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.


Sign in / Sign up

Export Citation Format

Share Document