Study on Preparation and Property of Drug Loading of AZM-PCL Nanoparticels

2011 ◽  
Vol 121-126 ◽  
pp. 1764-1768
Author(s):  
Li Li Ruan ◽  
Da Xin Wang ◽  
You Wei Zhang ◽  
Jiong Xin Zhao ◽  
Min Wu Wang ◽  
...  

This study was to prepare polycaprolactone (PCL) nanoparticles. The biodegradable PCL was used as the carrier, and Azithromycin (AZM) was used as the model drug. AZM-PCL nanoparticles (AZM-PCL-NPS) were prepared by desolvation method. The effect of preparation condition: concentration of PCL, molecular weight of PCL, organic solvents, dosage ratio and so on, were specially noted and compared. A homogeneous size distribution and good dispersion were observed, the average diameter was around 70~400 nm, and the distribution index was 0.036~0.136. The drug loading reached 27.69 %, and the efficiency of encapsulation reached as high as 93.25%. The results were better than the other similar researches, this preparation way was successful.

2020 ◽  
Vol 859 ◽  
pp. 3-8
Author(s):  
Vipaluk Patomchaiviwat ◽  
Sontaya Limmatvapirat ◽  
Chaisai Sirisapaya ◽  
Rohanee Kolae ◽  
Kulmanee Anantakul ◽  
...  

The objective of this study was to investigate the effect of modified hydroxypropyl tapioca starch (HPTS) and % drug loading on physical property of tablet. Paracetamol was used as model drug because of its poor compressibility. The filler ability of modified HPTS such as hydroxyl propyl oxidized tapioca starch (HPOTS), hydroxyl propyl crosslinked tapioca starch (HPCTS) and pregelatinized tapioca starch (PTS) were evaluated and compared with the commercial starch (Starch 1500®). Tablets were prepared by direct compression method and the percent drug loading were 15, 30, 45, 60, 75%. For modified HPTS, the hardness of the tablets tended to decrease when the concentration of paracetamol increased. At drug concentrations of 15-30%, HPOTS exhibited good performance of tablet as indicated by the high hardness, low friability and acceptable disintegration time. The obtained results were better than HPTS and comparable to Starch 1500®. Moreover, the results revealed that tablet containing PTS provided the highest hardness and prolonged disintegration time (>30 min) while tablet containing HPCTS showed rapid disintegration time (<2 min). Therefore, modified HPTS disclosed promising properties for application as tablet filler


Nano LIFE ◽  
2012 ◽  
Vol 02 (01) ◽  
pp. 1250003 ◽  
Author(s):  
DOAN VAN HONG THIEN ◽  
SHENG WEN HSIAO ◽  
MING HUA HO

Chitosan (CS) nanoparticles for drug delivery were fabricated by an electrospraying method. The effects of CS molecular weight on electrospraying were investigated. The size and morphology of CS particles were strongly influenced by CS molecular weight. Besides, CS concentration, electrical field, acetic acid concentration, and solution feeding rate in the electrospraying process were also studied. To evaluate the potential of electrosprayed CS nanoparticles in drug delivery, indomethacin (ID) was used as a model drug, where the encapsulation efficiency, the loading capacity, and the releasing profiles were identified. The CS-ID spherical nanoparticles were fabricated by the electrospraying technique, with the average diameter of 340 nm. Zeta potential of the ID-CS particles indicated that the particles were stable in the suspension. The encapsulation efficiency (EE) and loading capacity (LC) of ID were higher for 150-kDa CS than for 310-kDa CS. The EE of ID in electrosprayed CS particles was higher than that in particles prepared by other methods. The release profiles revealed that there were two stages for releasing and the long-term delivery could be obtained in the second stage. In summary, this research optimized the electrospraying process for the fabrication of CS nanoparticles and demonstrated the potential of electrosprayed CS nanoparticles as a drug carrier.


KIMIKA ◽  
2018 ◽  
Vol 29 (2) ◽  
pp. 30-35
Author(s):  
Erick Christofer I. Gonzales ◽  
Karl Gabriel M. Lloren ◽  
Jihan S. Al-shdifat ◽  
Lica B. Valdez ◽  
Krizzia Rae Gines ◽  
...  

Studies regarding particle size distribution, particularly in espressos are surprisingly few. Particle size distribution (PSD) is a plot that displays the average diameter versus percentage volume of the particles present in a sample. With increased awareness amongst coffee drinkers, a study aiming to report the effects of different pressure on particle size distribution of espresso from four different coffee blends was conducted. The method involved pulling of espresso shots at 7, 9, and 11 bar (or atm) from different coffee blends labeled as MA, CO, AL, and MO. Laser diffraction analysis showed different particle size groupings for each set of extraction pressure. Fine particles are within 1.20 to 28.70 µm. The most abundant particle size is centered at 185.4 µm. The particle size distribution of coffee blends composed of 100% Arabica coffee (AL and MO) but sourced from different locations, showed four similar modes or size ranges centered at 3.523, 13.005, 28.70, and 185.4 µm regardless of the extraction pressure or the coffee source. On the other hand, the coffee blends composed of different ratios of Arabica and Robusta (MA and CO) showed different modes depending on the pressure. This indicates the potential of PSD for characterizing the purity of a coffee blend. The particle size distribution can also give insights as to the sensory attributes of the espresso coffee.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sofia Ahmed ◽  
Nafeesa Mustaan ◽  
Muhammad Ali Sheraz ◽  
Syeda Ayesha Ahmed un Nabi ◽  
Iqbal Ahmad

The present study has been carried out to validate a UV spectrometric method for the assay of tolfenamic acid (TA) in organic solvents. TA is insoluble in water; therefore, a total of thirteen commonly used organic solvents have been selected in which the drug is soluble. Fresh stock solutions of TA in each solvent in a concentration of 1 × 10−4 M (2.62 mg%) were prepared for the assay. The method has been validated according to the guideline of International Conference on Harmonization and parameters like linearity, range, accuracy, precision, sensitivity, and robustness have been studied. Although the method was found to be efficient for the determination of TA in all solvents on the basis of statistical data 1-octanol, followed by ethanol and methanol, was found to be comparatively better than the other studied solvents. No change in the stock solution stability of TA has been observed in each solvent for 24 hours stored either at room (25±1°C) or at refrigerated temperature (2–8°C). A shift in the absorption maxima has been observed for TA in various solvents indicating drug-solvent interactions. The studied method is simple, rapid, economical, accurate, and precise for the assay of TA in different organic solvents.


2012 ◽  
Vol 602-604 ◽  
pp. 231-234
Author(s):  
Min Peng Zhu ◽  
Su Hong Li

Epichlorohydrin crosslinked starch microspheres (ECMs) were synthesized with soluble starch as a raw material and epichlorohydrin as a crosslinker. The characteristics of ECMs were investigated by Scanning Electron Microscopy (SEM) and Fourier Transform InfraRed spectroscopy (FT-IR).The drug loading and in vitro release properties of ECMs were studied using arginine as a model drug. The results indicate that ECMs have a spherical morphology with average diameter about 7μm. The drug loading studies show that after absorption for 1.5 h, the largest amount of drug (drug loading 31mg/g) is loaded when the quantity ratio of ECMs to arginine is 2. In-vitro release studies indicate that the ECMs are effective in controlled releasing arginine over an extended period of about 25 h.


2021 ◽  
Vol 12 (6) ◽  
pp. 8492-8501

SARS-CoV-2 (Covid 19) continues to be a great threat to lives globally as it causes illnesses such as the common cold, severe acute respiratory syndrome and spreads easily among people. In this work, thirteen molecular compounds were studied via quantum chemical calculations, molecular docking, and dynamic simulation, and ADMET (absorption, distribution, metabolism, excretion, and toxicity). The obtained descriptors (Log P, HBA, HBD, and molecular weight) showed that the studied compounds have the ability to act as a drug. Thus, it was detected that all the studied selected compounds possess a better tendency to inhibit main coronavirus protease; however, compound C1 has a higher tendency to inhibit main coronavirus protease than the other compounds, including the standard (Chloroquine). ADMET properties of compound C1 proved that the predicted ADMET level was better than the ADMET properties of the referenced drug.


1968 ◽  
Vol 35 (1) ◽  
pp. 1-6 ◽  
Author(s):  
G. G. Calapaj

SummaryWhen examined under the electron microscope, bovine casein micelles were seen as aggregates of spheroidal granules arranged in spherical symmetry. The granules were of 2 kinds—one transparent in the electron beam and the other relatively opaque. With increasing acidity of the milk the regular arrangements of granules tended to break down, and bridges composed of granules, formed between neighbouring micelles. The average diameter of the granules was about 8 mμ, from which a molecular weight of about 225000 was calculated. Evidence was adduced for the identity of these granules with the macromolecules of native casein in equilibrium with whey.Human casein micelles showed the same structural features. The average diameter of the granules was about 6 mμ, from which a molecular weight of about 100000 was calculated.


Author(s):  
A. V. Crewe

We have become accustomed to differentiating between the scanning microscope and the conventional transmission microscope according to the resolving power which the two instruments offer. The conventional microscope is capable of a point resolution of a few angstroms and line resolutions of periodic objects of about 1Å. On the other hand, the scanning microscope, in its normal form, is not ordinarily capable of a point resolution better than 100Å. Upon examining reasons for the 100Å limitation, it becomes clear that this is based more on tradition than reason, and in particular, it is a condition imposed upon the microscope by adherence to thermal sources of electrons.


Author(s):  
H.A. Cohen ◽  
W. Chiu ◽  
J. Hosoda

GP 32 (molecular weight 35000) is a T4 bacteriophage protein that destabilizes the DNA helix. The fragment GP32*I (77% of the total weight), which destabilizes helices better than does the parent molecule, crystallizes as platelets thin enough for electron diffraction and electron imaging. In this paper we discuss the structure of this protein as revealed in images reconstructed from stained and unstained crystals.Crystals were prepared as previously described. Crystals for electron microscopy were pelleted from the buffer suspension, washed in distilled water, and resuspended in 1% glucose. Two lambda droplets were placed on grids over freshly evaporated carbon, allowed to sit for five minutes, and then were drained. Stained crystals were prepared the same way, except that prior to draining the droplet, two lambda of aqueous 1% uranyl acetate solution were applied for 20 seconds. Micrographs were produced using less than 2 e/Å2 for unstained crystals or less than 8 e/Å2 for stained crystals.


1970 ◽  
Vol 24 (01/02) ◽  
pp. 026-032 ◽  
Author(s):  
N. A Marsh

SummaryMolecular exclusion chromatography was performed on samples of urine from normal and aminonucleoside nephrotic rats. Normal urine contained 2 peaks of urokinase activity, one having a molecular weight of 22,000 and the other around 200,000. Nephrotic urine contained three peaks of activity with MW’s 126,000, 60,000 and 30,000. Plasma activator determined from euglobulin precipitate had a MW. in excess of 200,000. The results indicate that in the normal animal, plasma plasminogen activator does not escape into the urine in substantial quantities but under the conditions of extreme proteinuria there may be some loss through the kidney. The alteration in urokinase output in nephrotic animals indicates a greatly disordered renal fibrinolytic enzyme system.The findings of this study largely support the hypothesis that plasma plasminogen activator of renal origin and urinary plasminogen activator (urokinase) are different molecular species.


Sign in / Sign up

Export Citation Format

Share Document