Three-Body Abrasive Wear Behavior of Basalt and Glass Fabric Reinforced Epoxy Composites

2011 ◽  
Vol 121-126 ◽  
pp. 534-538 ◽  
Author(s):  
C. Anand Chairman ◽  
S.P. Kumaresh Babu

Three-body abrasive wear behavior of basalt–epoxy (B–E) and glass–epoxy (G–E) composites have been investigated using Dry sand rubber wheel abrasion resistance for various abrading distance, viz., 150, 300, 450 and 600m and different loads(22N and 32N) at 200 rpm. The weight loss and specific wear rate as a function of load and abrading distance were determined. The weight loss increases with increasing load and also with abrading distance while the specific wear rate decreases with increase in abrading distance and increases with the load. Better abrasion wear resistance was observed in B-E composite compared to G–E composite. Scanning Electron Microscope (SEM) is used to examine the abraded composite specimens and revealed that the more damage occur to glass fiber compared to basalt fiber. Also good interfacial adhesion was observed between epoxy and basalt fiber which leads to good abrasive wear resistance.

2021 ◽  
Author(s):  
Safiye İpek Ayvaz ◽  
Mehmet Ayvaz

In this study, the effect of different counterparts on the wear resistance of AA6082 aluminum alloy was investigated. In tests using pin-on-disk method, 6 mm diameter Al2O3, 100Cr6 and WC-6Co balls were used as counterparts. The tests were carried out using 500 m sliding distance and 5N load. The lowest specific wear rate was measured as 7.58x10-4 mm3/Nm in WC-6Co / AA6082 couple, and the highest value was measured as 9.71x10-4 mm3/Nm in 100Cr6/AA6082 couple. In the Al2O3/AA6082 couple, the specific wear rate of the AA6082-T6 sample was determined as 8.23x10-4 mm3/Nm.While it was observed that the dominant wear type in the 100Cr6/AA6082 pair was abrasive wear, oxidation wear and oxide tribofilm were detected in the WC-6Co/AA6082 and Al2O3/AA6082 couple besides the abrasive wear.


Author(s):  
T. R. Uma ◽  
J. B. Simha ◽  
K. Narasimha Murthy

Laboratory abrasive wear tests have been reported on permanent moulded toughened austempered ductile iron. The influence of austempering temperature on the abrasive wear behavior have been studied and discussed. The results indicate that with increase in austempering temperature from 300°C to 350°C, the abrasive wear resistance increased, and as the austempering temperature increased to 400°C, there was reduction in the abrasive wear resistance. These results have been interpreted based on the structural features and graphite morphology.


2019 ◽  
Vol 71 (7) ◽  
pp. 893-900 ◽  
Author(s):  
Lei Dong ◽  
Xiaoyu Zhang ◽  
Kun Liu ◽  
Xiaojun Liu ◽  
Ruiming Shi ◽  
...  

Purpose The purpose of this paper is to investigate the tribological properties of the WC/TiC-Co substrate under different loading conditions under three impact abrasive wear conditions. Design/methodology/approach The three body collisional wear behavior of Co alloy with WC and TiC at three impact energy was studied from 1 to 3 J. Meanwhile, the microstructure, hardness, phase transformation and wear behavior of these specimens were investigated by scanning electron microscopy, Rockwell hardness (HRV), EDS and impact wear tester. The resulting wear rate was quantified by electronic balance measurements under different pressures. Findings The specific wear rate increases with the increase of the nonlinearity of the impact energy and the increase in the content of WC or TiC. The effect of TiC on wear rate is greater than that of WC, but the hardness is smaller. The wear characteristics of the samples are mainly characterized by three kinds of behavior, such as cutting wear, abrasive wear and strain fatigue wear. The WC-Co with fewer TiC samples suffered heavier abrasive wear than the more TiC samples under both low and high impact energy and underwent fewer strain fatigue wears under high impact energy. Originality/value The experimental results show that the wear resistance of the Co alloy is improved effectively and the excellent impact wear performance is achieved. The results can be used in cutting tools such as coal mine cutting machines or other fields.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 660
Author(s):  
Qun Wang ◽  
Yingpeng Zhang ◽  
Xiang Ding ◽  
Shaoyi Wang ◽  
Chidambaram Seshadri Ramachandran

In order to investigate the effect of WC grain size on coatings’ properties and abrasive wear performance, a few WC-20Cr3C2-7Ni coatings with three different WC grain sizes were deposited by the high-velocity oxy-fuel (HVOF) thermal spray process. The phase compositions, microstructures, and mechanical properties of the coatings were investigated. Furthermore, the two- and three-body abrasive wear performances of the three coatings were tested by using SiC and SiO2 abrasives, respectively. The results show that all the three coatings were composed of WC, Cr3C2, and the Ni binder as well as the (W,Cr)2C phase. The abrasive wear resistance of the WC-20Cr3C2-7Ni coating monotonously increased with increasing WC grain size when the SiC abrasive was used in the two- and three-body abrasive wear tests. However, the wear resistance trend was reversed when the SiO2 abrasive was used in the three-body abrasive wear test. The specific wear rate of the WC-20Cr3C2-7Ni coating exposed to the SiC abrasive under the two-body abrasive wear test was the largest. The wear resistance of the coatings was more significantly affected by the hardness of the abrasive particles than the size of carbides present within the coating. The high hardness of SiC can cut both the carbide and the binder phase of the WC-based cermet coatings, resulting in a high wear rate, whereas the low hardness of SiO2 cuts and/or scratches the binder initially, and then it dislodges the carbides from the matrix. The dislodged carbides which were subsequently pulled out from the matrix by the repeated impact of the SiO2 abrasives result in a milder wear rate.


Sign in / Sign up

Export Citation Format

Share Document