Mechanical and Thermal Properties of Kaolin/Natural Rubber Nanocomposites Prepared by the Conventional Two-Roll Mill Method

2012 ◽  
Vol 164 ◽  
pp. 142-145 ◽  
Author(s):  
Qian Zhang ◽  
Yu De Zhang ◽  
Yan Wang

Nanoomposites consisting of natural rubber (NR) reinforced with the modified kaolin were fabricated. The effect of modified kaolin loading on the mechanical properties of the vulcanizates was examined by varying its incorporation (20–50 phr). The NR-based nanocomposites were characterized using the transmission electron microscopy (TEM), Instron tensile machine and thermal analyser. These filled NR composites exhibit outstanding mechanical properties and much higher thermal stability compared to the pure NR. The hardness and tensile properties increased with increasing filler loading and an optimum of tensile strength was achieved at 50 phr of modified kaolin. The morphological studies by TEM revealed that kaolinite layers were finely dispersed into the natural rubber matrix and orientationally arranged in parallel

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9507-9522
Author(s):  
Nurul Jannah Sallehuddin ◽  
Hanafi Ismail

Non-treated and silane-treated kenaf bast/natural rubber latex foam (NRLF) were prepared using the Dunlop method at different filler loading (0, 3, 5, and 7 pphr). The properties were investigated in terms of mechanical properties, tensile, compression, hardness, and swelling behavior. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to characterize kenaf bast/NRLF. With the modulus at 100% elongation (M100), the compression strength and hardness showed increments in value with increments of kenaf loading. However, different results showed in tensile strength, elongation at break, swelling percentage, and recovery percentage, which decreased at higher filler loading. Silane-treated kenaf bast/NRLF showed higher value in all properties except for elongation at break, swelling, and recovery percentage. The improvement of properties was supported by SEM surface morphological studies that showed better adhesion between the rubber matrix and kenaf filler.


2015 ◽  
Vol 1109 ◽  
pp. 195-199 ◽  
Author(s):  
Abd Aziz Azira ◽  
Dayang Habibah Abangismawi I. Hassim ◽  
D. Verasamy ◽  
Abu Bakar Suriani ◽  
M. Rusop

In order to achieve improvements in the performance of rubber materials, the development of carbon nanotube (CNT)-reinforced rubber composites was attempted. The CNT/epoxidised natural rubber (ENR) nanocomposite was prepared through latex technology. Physical and mechanical properties of the CNT/ENR nanocomposites were characterized in contrast to the carbon black (CB)/ENR composite. The dispersion of the CNTs in the rubber matrix and interfacial bonding between them were rather good; monitored transmission electron microscopy and scanning electron microscopy. The mechanical properties of the CNT-reinforced ENR showed a considerable increase compared to the neat ENR and traditional CB/ENR composite. The storage modulus of the CNT/ENR nanocomposites greatly exceeds that of neat ENR and CB/ENR composites and a maximum conductivity of about 1 S m-1 can be achieved. The approach presented can be adapted to other CNT/polymer latex systems.


2014 ◽  
Vol 925 ◽  
pp. 308-312 ◽  
Author(s):  
Mou'ad A. Tarawneh ◽  
Sahrim Haji Ahmad ◽  
Yu Li Jiun ◽  
Radwan Dweiri ◽  
Ibrahim N. Hassan

In this paper the polymer nanocomposite of nickel zinc (NiZn) ferrite nanoparticles incorporated into the thermoplastic natural rubber nanocomposite (TPNR) were prepared via melt blending method. The effect of different NiZn loading (2-10 wt%) on morphology, tensile and dynamic mechanical properties of the obtained composites was investigated. It was found that NiZn ferrite is well dispersed in the thermoplastic natural rubber matrix. The tensile results indicated that filler loading has improved the tensile strength and Youngs modulus of the nanocomposite. However, the elongation at break decreased with increasing the percentage of NiZn. Dynamic mechanical test showed that the highest storage modulus is at 8 wt% filler. Any further increment of the filler content leads to the formation of agglomerate hence affecting the properties. The Scanning electron micrograph (SEM) micrographs reveal aspect ratio and filler orientation in the TPNR matrix also strongly promoted interfacial adhesion between the filler and the matrix to control its properties.


2011 ◽  
Vol 471-472 ◽  
pp. 845-850 ◽  
Author(s):  
Komethi Muniandy ◽  
Hanafi Ismail ◽  
Nadras Othman

Rattan for its potential as a new type of filler was investigated in natural rubber (NR) compounds. Natural rubber (NR) compounds were prepared by the incorporation of rattan at different loadings into a natural rubber matrix with a laboratory size two roll mill. The effect of rattan loading as filler on curing characteristics, tensile properties, morphological properties using scanning electron microscopy (SEM) and rubber–filler interaction of rattan filled natural rubber compound were studied in the filler loading range of 0 to 30 phr. The results indicate that the scorch time (ts2) and cure time (t90) shorten with increasing filler loading, whereas the maximum torque (MH) showed an increasing trend. As the filler loading increases, the tensile strength and elongation at break decreases whilst tensile modulus; stress at 100 % elongation and stress at 300 % elongation increased. The rubber filler interactions of the rubber compound decreased with increasing filler loading. SEM studies indicate that the increasing rattan loading weakens the rubber-rattan interactions.


Author(s):  
Anyaporn Boonmahitthisud

Natural rubber (NR) is representative biomass polymer and the effective uses are strongly contributed to sustainable society. This chapter presents the innovative and advanced rubber nanocomposites with polystyrene-encapsulated silica nanohybrids (PS-nSiO2) subsequently used as a nanofiller for NR and NR/styrene butadiene rubber (NR/SBR). The PS-nSiO2 were prepared via ‘in situ' differential microemulsion polymerization. The core-shell nanohybrids of PS-nSiO2 were achieved with an average diameter of 40 nm using a smaller amount of surfactant, compared to microemulsion polymerization method. Moreover, the effects of the NR and NR/SBR filled with PS-nSiO2 nanohybrids on the mechanical properties, thermal stability, flammability and morphology are also discussed. The results indicated that the encapsulation of nSiO2 with PS can provide not only the well-dispersion of nanoparticles in the rubber matrix but also the synergistic properties of two components from the polymer and the inorganic nanoparticles by improving mechanical properties, thermal stability and flammability of rubber nanocomposites.


2018 ◽  
Vol 936 ◽  
pp. 31-36 ◽  
Author(s):  
Wichudaporn Seangyen ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
Peerapan Dittanet

Silica nanoparticles were synthesized by rice husk ash (RHA) produced from jasmine rice husk and riceberry rice husk via sol-gel method for the use as reinforcing fillers in natural rubber (NR). The obtained silica nanoparticles are spherical in shape and the particle sizes were observed to be in the 10-20 nm range with uniformly size distribution. The surface of silica nanoparticles was treated with a silane coupling agent confirmed by FTIR. The treated silica nanoparticles were then incorporated into NR and vulcanized with electron beam irradiation. The rubber nanocomposites with silica nanoparticles, produced from jasmine rice husk and riceberry rice husk, resulted in higher mechanical properties (tensile strength and modulus) than neat rubber vulcanizate. The modified rubber vulcanizates revealed rougher surface with tear lines as compared to the neat rubber vulcanizates, indicating the improved strength. Interestingly, the rubber nanocomposites with silica nanoparticles from jasmine rice husk showed higher tensile strength and modulus than silica nanoparticles produced from riceberry rice husk. The micrographs indicated better dispersion of NR composites with jasmine rice husk which leads to a strong interaction between silica nanoparticles and rubber matrix, thereby improving the strength.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Quang Nguyen Trong ◽  
Hung Dang Viet ◽  
Linh Nguyen Pham Duy ◽  
Chuong Bui ◽  
Duong Duc La

Selection of a suitable thermal aging process could render desirable mechanical properties of the rubbers or blended rubbers. In this work, the effect of the aging processes on the mechanical properties and activation energies of natural rubbers (NR) and NR/chloroprene rubbers (CR) blends with low CR contents (5–10%) was investigated. Three aging processes including heat aging (at 110°C for 22 hours), mechanical aging (under dynamic loading to 140% strain for 16000 cycles), and complex aging (heat and mechanical aging) were studied. The results revealed that the compatibility of CR in natural rubber matrix had a significant effect on the dynamic properties of the blended rubber and negligible effect on the static properties. The changes in activation energies of the blended rubber during aging processes were calculated using Arrhenius relation. The calculated changes (ΔUc, ΔUd, and ΔUT) in activation energies were consistent with the results of mechanical properties of the blended rubber. Interestingly, the change in activation energies using complex aging conditions (ΔUc) was mostly equal to the total changes in activation energies calculated separately from heat aging (ΔUT) and mechanical aging (ΔUd) conditions. This indicates that, in complex aging conditions, the heat and dynamic loading factors act independently on the properties of the blended rubber.


Sign in / Sign up

Export Citation Format

Share Document