Application of Modbus Communication Technology in Steam Injection Control System of Thermal Recovery Station

2012 ◽  
Vol 241-244 ◽  
pp. 2362-2364
Author(s):  
Yu Heng Zhu ◽  
Bao Liang Liu

Steam generation and injection in thermal recovery station constitute a very complicated HPHT system, mainly including power supply, water supply and treatment, fuel oil or gas regulation, steam and gas separation, safety and protection etc. To ensure normal operation of the system and realize centralized intelligent management and control, Modbus communication technology is used for configuration and connection of hardware and selection of software. The result shows that sub-systems of steam injection station such as intelligent power supply etc are well integrated.

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2993
Author(s):  
Łukasz Sołtysek ◽  
Jerzy Szczepanik ◽  
Radosław Dudzik ◽  
Maciej Sułowicz ◽  
Andreas Schwung

The article is a review of the latest available technologies on the market which are part of “Industry 4.0”, in the field of protection, control, and power supply of equipment. The authors focus on the development of the protection devices (PLC controllers), which can be used not only for protection purposes but also for the diagnosis and monitoring of the entire system. The key element is the communication structure involving protection, main PLC controller, and DCS, which has an impact on the reliability of the whole system. The authors compare different solutions that allow increasing the reliability of the system (ethernet connection), compared to the classic system (wire connection). Universal protection devices are more flexible devices compared to classic control equipment, but also allow us to make modifications to the structure after commissioning, during normal operation of the system without stopping the technological process.


Author(s):  
Benling Hu ◽  
Le Yang ◽  
Chan Wei ◽  
Min Luo

ABSTRACT Objective: To evaluate the management mode for the prevention and control of coronavirus 2019 (COVID-19) transmission utilized at a general hospital in Shenzhen, China, with the aim to maintain the normal operation of the hospital. Methods: From January 2, 2020 to April 23, 2020, Hong Kong–Shenzhen Hospital, a tertiary hospital in Shenzhen, has operated a special response protocol named comprehensive pandemic prevention and control model, which mainly includes six aspects: 1) human resource management; 2) equipment management; 3) logistics management; 4) cleaning, disinfection and process reengineering; 5) environment layout; 6) and training and assessment. The detail of every aspect was described and its efficiency was evaluated. Results: A total of 198,802 patients were received. Of those, 10,821 were hospitalized; 26,767 were received by the emergency department and fever clinics; 288 patients were admitted for observation with fever; and 324 were admitted as suspected cases for isolation. Under the protocol of comprehensive pandemic prevention and control model, no case of hospital-acquired infection with COVID-19 occurred among the inpatients or staff. Conclusion: The present comprehensive response model may be useful in large public health emergencies to ensure appropriate management and protect the health and life of individuals.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4060
Author(s):  
Artur Kozłowski ◽  
Łukasz Bołoz

This article discusses the work that resulted in the development of two battery-powered self-propelled electric mining machines intended for operation in the conditions of a Polish copper ore mine. Currently, the global mining industry is seeing a growing interest in battery-powered electric machines, which are replacing solutions powered by internal combustion engines. The cooperation of Mine Master, Łukasiewicz Research Network—Institute of Innovative Technologies EMAG and AGH University of Science and Technology allowed carrying out a number of works that resulted in the production of two completely new machines. In order to develop the requirements and assumptions for the designed battery-powered propulsion systems, underground tests of the existing combustion machines were carried out. Based on the results of these tests, power supply systems and control algorithms were developed and verified in a virtual environment. Next, a laboratory test stand for validating power supply systems and control algorithms was developed and constructed. The tests were aimed at checking all possible situations in which the battery gets discharged as a result of the machine’s ride or operation and when it is charged from the mine’s mains or with energy recovered during braking. Simulations of undesirable situations, such as fluctuations in the supply voltage or charging power limitation, were also carried out at the test stand. Positive test results were obtained. Finally, the power supply systems along with control algorithms were implemented and tested in the produced battery-powered machines during operational trials. The power systems and control algorithms are universal enough to be implemented in two different types of machines. Both machines were specially designed to substitute diesel machines in the conditions of a Polish ore mine. They are the lowest underground battery-powered drilling and bolting rigs with onboard chargers. The machines can also be charged by external fast battery chargers.


2020 ◽  
Vol 23 (2) ◽  
pp. 52-58
Author(s):  
S. SKRYPNYK ◽  

Our world with its high technologies has long been deeply dependent on the quality of electricity supply. In most countries of the world there are national power grids that combine the entire set of generating capacity and loads. This network provides the operation of household appliances, lighting, heating, refrigeration, air conditioning and transport, as well as the functioning of the state apparatus, industry, finance, trade, health services and utilities across the country. Without this utility, namely electricity, the modern world simply could not live at its current pace. Sophisticated technological improvements are firmly rooted in our lives and workplaces, and with the advent of e-commerce began the process of continuous transformation of the way individuals interact with the rest of the world. But with the achievement of intelligent technologies, an uninterrupted power supply is required, the parameters of which exactly meet the established standards. These standards maintain our energy security and create a reliable power system, that is maintaining the system in a trouble-free state. Overvoltage is the deviation of the rated voltage from the value of the corresponding quality standard (frequency, sinusoidal voltage and compliance of harmonics). Overvoltage in terms of fire hazard is one of the most dangerous emergency modes of electrical equipment, which causes conditions that in most cases are sufficient for the occurrence of fire hazards (exceeding the allowable voltage leads to disruption of normal operation or possible ignition). Against the background of deteriorating engineering systems, increased power consumption and poor maintenance, power supply of electrical installations, the main causes of overvoltage in electrical networks are thunderstorms (atmospheric overvoltage), switching switches, uneven phase load in electrical networks, etc. The physical picture of internal overvoltage is due to oscillatory transients from the initial to the established voltage distributions in the conductive sections due to the different situation in the electrical circuit. In the conditions of operation of electric networks planned, mode or emergency situations are possible. Therefore, the ranges of overvoltage are determined by the range from several hundred volts to tens and hundreds of kilovolts, and depend on the types of overvoltage. Atmospheric overvoltage is considered to be one of the most dangerous types of emergency modes of operation of the electrical network. This overvoltage occurs as a result of lightning discharge during precipitation by concentrating electricity on the surface of the object, the introduction of potential through engineering networks and


2021 ◽  
Author(s):  
Huan Luo ◽  
Zhengang Shi ◽  
Yan Zhou ◽  
Ni Mo

Abstract High temperature gas-cooled reactor (HTR) is a kind of reactor with inherent safety developed by Institute of Nuclear Energy and New Energy Technology of Tsinghua University. In the first circuit, pure helium is used as coolant and the main helium fan is used to promote the coolant circulation. In order to meet the requirements of service environment and performance, the main helium fan adopts the non-lubricant active magnetic bearing (AMB) system as its support system. For the high-speed rotating equipment supported by AMBs, losing power would lead to bearing failure and cause serious damage to the equipment. In this paper, the power supply system of AMBs is optimized. The power supply of AMB system is connected with the DC-link of the motor converter through DC/DC converter. During normal operation, the AMB system is supplied by external power supply, and the DC/DC converter is used as the backup redundant power supply. In the event of a power failure accident, the DC/DC converter is put into operation, converting the remanet kinetic energy of the motor into stable power to maintain the normal operation of the AMB system. The DC/DC converter adopts two-stage topology structure of the former BUCK converter and the later LLC converter, and completes the voltage stabilization control of the latter LLC converter through the digital signal processor (DSP). Experimental results show that this scheme can realize the power loss protection function of the rotating equipment supported by AMBs.


2014 ◽  
Vol 1070-1072 ◽  
pp. 779-784
Author(s):  
Dan Luo ◽  
Yi Xiao ◽  
Jie Na Zhou

Harmonic Analysis and control is very important for the power system because harmonics have serious harm to its normal operation. Harmonic Analysis uses fast Fourier transform (FFT) to solve this problem though it causes the spectrum leakage which Increases the calculation error. To solve this problem, the interpolation algorithm combine with tapered time windows are used. The tapered time windows solve the long-range leakage and the interpolation algorithm solves the problem of short-range leakage.


Sign in / Sign up

Export Citation Format

Share Document