IBIS Model-Based Simulation Study on Variation of Ecological Carbon Sink Potential in Shenzhen City

2012 ◽  
Vol 260-261 ◽  
pp. 981-987
Author(s):  
Wei Ling Liu ◽  
Lin Bo Zhang ◽  
Bin Gong

IBIS (Integrated Biosphere Simulator) model is an ecosystem process model, which represents the research direction of a global carbon cycle simulation. Based on the existing research achievements, the regional ecological carbon sink potential is simulated from point to surface with a long time serie of meteorological data (1954-2010), data on different ecosystem vegetation types, soil texture data, terrain data and remote sensing data. The results are listed as follows: there is no significant variation of potential carbon sink of Shenzhen vegetation over the past 30 years, carbon sequestration caapcity ranges within 43.52-55.82×104Mg C/a, and the potential carbon sink intensity value within 0-624 C/m2/a. Precipitation is a main factor which influnces the ecosystem carbon sink intensity in Shenzhen City. The carbon sink intensity of ecosystem is increased with more annual precipitation.

2021 ◽  
Vol 13 (14) ◽  
pp. 2712
Author(s):  
Marta Ciazela ◽  
Jakub Ciazela

Variations in climatic pattern due to boundary layer processes at the topoclimatic scale are critical for ecosystems and human activity, including agriculture, fruit harvesting, and animal husbandry. Here, a new method for topoclimate mapping based on land surface temperature (LST) computed from the brightness temperature of Landsat ETM+ thermal bands (band6) is presented. The study was conducted in a coastal lowland area with glacial landforms (Wolin Island). The method presented is universal for various areas, and is based on freely available remote sensing data. The topoclimatic typology obtained was compared to the classical one based on meteorological data. It was proven to show a good sensitivity to changes in topoclimatic conditions (demonstrated by changes in LST distribution) even in flat, agricultural areas with only small variations in topography. The technique will hopefully prove to be a convenient and relatively fast tool that can improve the topoclimatic classification of other regions. It could be applied by local authorities and farmer associations for optimizing agricultural production.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 79
Author(s):  
Svetlana N. Morozkina ◽  
Thi Hong Nhung Vu ◽  
Yuliya E. Generalova ◽  
Petr P. Snetkov ◽  
Mayya V. Uspenskaya

For a long time, the pharmaceutical industry focused on natural biologically active molecules due to their unique properties, availability and significantly less side-effects. Mangiferin is a naturally occurring C-glucosylxantone that has substantial potential for the treatment of various diseases thanks to its numerous biological activities. Many research studies have proven that mangiferin possesses antioxidant, anti-infection, anti-cancer, anti-diabetic, cardiovascular, neuroprotective properties and it also increases immunity. It is especially important that it has no toxicity. However, mangiferin is not being currently applied to clinical use because its oral bioavailability as well as its absorption in the body are too low. To improve the solubility, enhance the biological action and bioavailability, mangiferin integrated polymer systems have been developed. In this paper, we review molecular mechanisms of anti-cancer action as well as a number of designed polymer-mangiferin systems. Taking together, mangiferin is a very promising anti-cancer molecule with excellent properties and the absence of toxicity.


2010 ◽  
Vol 14 (14) ◽  
pp. 1-12 ◽  
Author(s):  
Shrinidhi Ambinakudige ◽  
Sami Khanal

Abstract Southern forests contribute significantly to the carbon sink for the atmospheric carbon dioxide (CO2) associated with the anthropogenic activities in the United States. Natural disasters like hurricanes are constantly threatening these forests. Hurricane winds can have a destructive impact on natural vegetation and can adversely impact net primary productivity (NPP). Hurricane Katrina (23–30 August 2005), one of the most destructive natural disasters in history, has affected the ecological balance of the Gulf Coast. This study analyzed the impacts of different categories of sustained winds of Hurricane Katrina on NPP in Mississippi. The study used the Carnegie–Ames–Stanford Approach (CASA) model to estimate NPP by using remote sensing data. The results indicated that NPP decreased by 14% in the areas hard hit by category 3 winds and by 1% in the areas hit by category 2 winds. However, there was an overall increase in NPP, from 2005 to 2006 by 0.60 Tg of carbon, in Mississippi. The authors found that Pearl River, Stone, Hancock, Jackson, and Harrison counties in Mississippi faced significant depletion of NPP because of Hurricane Katrina.


2021 ◽  
Author(s):  
Georg Wohlfahrt ◽  
Albin Hammerle ◽  
Barbara Rainer ◽  
Florian Haas

<p>Ongoing changes in climate (both in the means and the extremes) are increasingly challenging grapevine production in the province of South Tyrol (Italy). Here we ask the question whether sun-induced chlorophyll fluorescence (SIF) observed remotely from space can detect early warning signs of stress in grapevine and thus help guide mitigation measures.</p><p>Chlorophyll fluorescence refers to light absorbed by chlorophyll molecules that is re-emitted in the red to far-red wavelength region. Previous research at leaf and canopy scale indicated that SIF correlates with the plant photosynthetic uptake of carbon dioxide as it competes for the same energy pool.</p><p>To address this question, we use time series of two down-scaled SIF products (GOME-2 and OCO-2, 2007/14-2018) as well as the original OCO-2 data (2014-2019). As a benchmark, we use several vegetation indices related to canopy greenness, as well as a novel near-infrared radiation-based vegetation index (2000-2019). Meteorological data fields are used to explore possible weather-related causes for observed deviations in remote sensing data. Regional DOC grapevine census data (2000-2019) are used as a reference for the analyses.</p>


2013 ◽  
Vol 17 (9) ◽  
pp. 3623-3637 ◽  
Author(s):  
O. Merlin

Abstract. The space defined by the pair surface temperature (T) and surface albedo (α), and the space defined by the pair T and fractional green vegetation cover (fvg) have been extensively used to estimate evaporative fraction (EF) from solar/thermal remote sensing data. In both space-based approaches, evapotranspiration (ET) is estimated as remotely sensed EF times the available energy. For a given data point in the T-α space or in the T-fvg space, EF is derived as the ratio of the distance separating the point from the line identified as the dry edge to the distance separating the dry edge and the line identified as the wet edge. The dry and wet edges are classically defined as the upper and lower limit of the spaces, respectively. When investigating side by side the T-α and the T-fvg spaces, one observes that the range covered by T values on the (classically determined) wet edge is different for both spaces. In addition, when extending the wet and dry lines of the T-α space, both lines cross at α ≈ 0.4 although the wet and dry edges of the T-fvg space never cross for 0 &amp;leq; fvg < 1. In this paper, a new ET (EF) model (SEB-1S) is derived by revisiting the classical physical interpretation of the T-α space to make its wet edge consistent with that of the T-fvg space. SEB-1S is tested over a 16 km by 10 km irrigated area in northwestern Mexico during the 2007–2008 agricultural season. The classical T-α space-based model is implemented as benchmark to evaluate the performance of SEB-1S. Input data are composed of ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) thermal infrared, Formosat-2 shortwave, and station-based meteorological data. The fluxes simulated by SEB-1S and the classical T-α space-based model are compared on seven ASTER overpass dates with the in situ measurements collected at six locations within the study domain. The ET simulated by SEB-1S is significantly more accurate and robust than that predicted by the classical T-α space-based model. The correlation coefficient and slope of the linear regression between simulated and observed ET is improved from 0.82 to 0.93, and from 0.63 to 0.90, respectively. Moreover, constraining the wet edge using air temperature data improves the slope of the linear regression between simulated and observed ET.


2021 ◽  
Vol 13 (19) ◽  
pp. 3845
Author(s):  
Guangbo Ren ◽  
Jianbu Wang ◽  
Yunfei Lu ◽  
Peiqiang Wu ◽  
Xiaoqing Lu ◽  
...  

Climate change has profoundly affected global ecological security. The most vulnerable region on Earth is the high-latitude Arctic. Identifying the changes in vegetation coverage and glaciers in high-latitude Arctic coastal regions is important for understanding the process and impact of global climate change. Ny-Ålesund, the northern-most human settlement, is typical of these coastal regions and was used as a study site. Vegetation and glacier changes over the past 35 years were studied using time series remote sensing data from Landsat 5/7/8 acquired in 1985, 1989, 2000, 2011, 2015 and 2019. Site survey data in 2019, a digital elevation model from 2009 and meteorological data observed from 1985 to 2019 were also used. The vegetation in the Ny-Ålesund coastal zone showed a trend of declining and then increasing, with a breaking point in 2000. However, the area of vegetation with coverage greater than 30% increased over the whole study period, and the wetland moss area also increased, which may be caused by the accelerated melting of glaciers. Human activities were responsible for the decline in vegetation cover around Ny-Ålesund owing to the construction of the town and airport. Even in areas with vegetation coverage of only 13%, there were at least five species of high-latitude plants. The melting rate of five major glaciers in the study area accelerated, and approximately 82% of the reduction in glacier area occurred after 2000. The elevation of the lowest boundary of the five glaciers increased by 50–70 m. The increase in precipitation and the average annual temperature after 2000 explains the changes in both vegetation coverage and glaciers in the study period.


Author(s):  
Chiara Copat ◽  
Antonio Cristaldi ◽  
Maria Fiore ◽  
Alfina Grasso ◽  
Pietro Zuccarello ◽  
...  

A new coronavirus (SARS-CoV-2) have determined a pneumonia outbreak in China (Wuhan and Hubei) on December 2019. While pharmaceutical and non-pharmaceutical intervention strategies are strengthened worldwide, the scientific community has been studying the risk factors associated with SARS-Cov-2, to enrich epidemiological information. For a long time, before the industrialized era, air pollution has been a real and big health concern and it is today a very serious environmental risk for many diseases and anticipated deaths in the world. It has long been known that air pollutants increasing the invasiveness of pathogens for humans by acting as a carrier and making people more sensitive to pathogens through a negative influence on the immune system. Based on scientific evidences, the hypothesis that air pollution, resulting from a combination of factors such as meteorological data, level of industrialization as well as regional topography, can acts both as an infection carrier as a harmful factor of the health outcomes of COVID-19 disease has been raised recently. This hypothesis is turning in scientific evidence, thanks to the numerous studies that have been launched all over the world.With this review, we want to provide a first unique view of all the first epidemiological studies relating the association between air pollution and SARS-CoV-2. The Authors, who first investigated this association, although with great effort and rapidity of analysis dictated by a global emergency, often used different research methods or not all include confounding factors whenever possible. In addition, to date incidence data are underestimated in all countries, and to a lesser extent also mortality data. For this reason, the cases included in the considered studies cannot be considered real. Although it determines important limitations for direct comparison of results, and more studies are needed to strengthen scientific evidences and support firm conclusions, major findings are consistent, highlighting the important contribution of PM2.5 and NO2 on the COVID-19 spread and with a less extent also PM10.


2009 ◽  
Vol 1 (1) ◽  
Author(s):  
Biswajeet Pradhan

AbstractThis paper summarizes the findings of groundwater potential zonation mapping at the Bharangi River basin, Thane district, Maharastra, India, using Satty’s Analytical Hierarchal Process model with the aid of GIS tools and remote sensing data. To meet the objectives, remotely sensed data were used in extracting lineaments, faults and drainage pattern which influence the groundwater sources to the aquifer. The digitally processed satellite images were subsequently combined in a GIS with ancillary data such as topographical (slope, drainage), geological (litho types and lineaments), hydrogeomorphology and constructed into a spatial database using GIS and image processing tools. In this study, six thematic layers were used for groundwater potential analysis. Each thematic layer’s weight was determined, and groundwater potential indices were calculated using groundwater conditions. The present study has demonstrated the capabilities of remote sensing and GIS techniques in the demarcation of different groundwater potential zones for hard rock basaltic basin.


Sign in / Sign up

Export Citation Format

Share Document