A Gigabit Fiber Optical Bus Based on the RapidIO Technology

2012 ◽  
Vol 263-266 ◽  
pp. 1021-1027
Author(s):  
Ying Qing Qian ◽  
Xiao Feng Wang ◽  
Li Lao ◽  
Yun Lu

The RapidIO architecture is an interconnect technology based on a high-performance and packet-switched interconnect technology. The paper uses the RapidIO Interconnect technology to design a fiber optic bus. The fiber optic bus provides a tightly coupled interconnect with Gigabit speed, which can improve the processing capability of the space distributed system, such as the weapons platform with high-speed and high-capacity multi-system.

2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Subramanian Arumugom ◽  
Marimuthu Rajaram

Currently, power systems are involuntarily controlled without high speed control and are frequently initiated, therefore resulting in a slow process when compared with static electronic devices. Among various power interruptions in power supply systems, voltage dips play a central role in causing disruption. The dynamic voltage restorer (DVR) is a process based on voltage control that compensates for line transients in the distributed system. To overcome these issues and to achieve a higher speed, a new methodology called the Parallel IGBT-Based Interline Dynamic Voltage Restorer (PIGBT-IDVR) method has been proposed, which mainly spotlights the dynamic processing of energy reloads in common dc-linked energy storage with less adaptive transition. The interline power flow controller (IPFC) scheme has been employed to manage the power transmission between the lines and the restorer method for controlling the reactive power in the individual lines. By employing the proposed methodology, the failure of a distributed system has been avoided and provides better performance than the existing methodologies.


1995 ◽  
Vol 34 (01/02) ◽  
pp. 96-103 ◽  
Author(s):  
R. S. Mezrich ◽  
C. A. Kulikowski ◽  
L. Gong

Abstract:Technology breakthroughs in high-speed, high-capacity, and high performance desk-top computers and workstations make the possibility of integrating multimedia medical data to better support clinical decision making, computer-aided education, and research not only attractive, but feasible. To systematically evaluate results from increasingly automated image segmentation it is necessary to correlate them with the expert judgments of radiologists and other clinical specialists interpreting the images. These are contained in increasingly computerized radiological reports and other related clinical records. But to make automated comparison feasible it is necessary to first ensure compatibility of the knowledge content of images with the descriptions contained in these records. Enough common vocabulary, language, and knowledge representation components must be represented on the computer, followed by automated extraction of image-content descriptions from the text, which can then be matched to the results of automated image segmentation. A knowledge-based approach to image segmentation is essential to obtain the structured image descriptions needed for matching against the expert’s descriptions. We have developed a new approach to medical image analysis which helps generate such descriptions: a knowledge-based object-centered hierarchical planning method for automatically composing the image analysis processes. The problem-solving steps of specialists are represented at the knowledge level in terms of goals, tasks, and domain objects and concepts separately from the implementation level for specific representations of different image types, and generic analysis methods. This system can serve as a major functional component in incrementally building and updating a structured and integrated hybrid information system of patient data. This approach has been tested for magnetic resonance image interpretation, and has achieved promising results.


2015 ◽  
Author(s):  
Ray-Qing Lin ◽  
Susan Brewton ◽  
George S. Hazen ◽  
Damien Bretall

The high-speed Rigid Hulled Inflatable Boat (RHIB) is one of the key forms of transportation for the U.S. Navy in littoral regions. This planing craft, shown in Figure 1, is a lightweight, high-performance, high-capacity boat. It is constructed with a solid, shaped hull and flexible tubes at the gunwale. The flexible tubes maintain a high buoyancy to avoid capsize in bad seas and to better absorb heavy loads. When the RHIB maneuvers in a seas state greater than 2, however, it often gets off plane or jumps to an entirely different heading regardless of the craft speed and heading relative to the direction of wave propagation. This behavior may cause the planing boat to miss its target track and veer off course. Furthermore, if a RHIB is supporting shore facilities or large ships transporting troops, the deviations and jumps may also impact the safety of the troops. In order to shine a light on improving the RHIB planing craft design for better performance at higher sea states, this study used a fully-nonlinear ship motion model named the Digital Self consistent Ship Experimental Laboratory (DiSSEL) by Lin and Kuang (2011a and 2011b) as a numerical tool to examine the dynamic balance of a six-degree-freedom (6DOF) RHIB. First the RHIB is maneuvered in Seas State 2, then in Seas State 3. The results of the simulation serve to better understand the underlying physics that cause dynamics instability at higher sea states. This study also serves to validate the accuracy of the DiSSEL ship motion model with observational data of a 10-meter long RHIB at Seas State 2. The model shows good agreement with experimental data in all headings and with a wide range of boat speeds (up to Froude number of 1.265).


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

One of the major advancements applied to scanning electron microscopy (SEM) during the past 10 years has been the development and application of digital imaging technology. Advancements in technology, notably the availability of less expensive, high-density memory chips and the development of high speed analog-to-digital converters, mass storage and high performance central processing units have fostered this revolution. Today, most modern SEM instruments have digital electronics as a standard feature. These instruments, generally have 8 bit or 256 gray levels with, at least, 512 × 512 pixel density operating at TV rate. In addition, current slow-scan commercial frame-grabber cards, directly applicable to the SEM, can have upwards of 12-14 bit lateral resolution permitting image acquisition at 4096 × 4096 resolution or greater. The two major categories of SEM systems to which digital technology have been applied are:In the analog SEM system the scan generator is normally operated in an analog manner and the image is displayed in an analog or "slow scan" mode.


Sign in / Sign up

Export Citation Format

Share Document