The Characteristic Simulation Analysis Method Based on the Theory of Similarity for Combined Interface of Heavy Machine Tools

2013 ◽  
Vol 274 ◽  
pp. 183-186
Author(s):  
Sheng Le Ren ◽  
Ye Dai ◽  
Ming Che ◽  
Xu Du

The research on the combination of the characteristics becomes extremely important to the success of machine tool design. This paper mainly studies the dynamic and static characteristic parameters of heavy machine tool guide-way joint. And put forward a practical machine tool combining surface analysis method according to the experimental verification. It is presented that small linear guide as a scale model based on similarity theory. And make a research on the static and dynamic characteristics of small guide joint and the conclusion extended to heavy machine set of faces. And the conclusion is extended to the heavy machine set of faces. The results can be used as reference data about structure and design of the machine tool due to the similarity principle and error range.

2012 ◽  
Vol 226-228 ◽  
pp. 617-620
Author(s):  
Mo Wu Lu ◽  
Guo Ming Zhang

HTC 100 CNC lathe is a heavy machine tool. The lathe bed is the important part of the machine tool. The static characteristic of the lathe bed directly influence the machining accuracy and production efficiency of the machine tool. At present, the lathe bed design general depends on the designer’s experience. In this paper, the static analysis of the HTC100 CNC lathe bed is carried out with ANSYS 12.0. The node equivalent stress distribution cloud, the total deformation distribution of Lathe bed and the maximum distortion under various kinds of working conditions are obtained. According to the result, the structure of lathe bed design tends to conservative and the distribution of static stiffness is unreasonable, which is necessary to optimum design.


2021 ◽  
Author(s):  
Jiaxing Shen ◽  
Yu Chen ◽  
Ping Xu ◽  
Xing-Yuan Zhang ◽  
Ying-Hua Yu ◽  
...  

Abstract Basalt fiber polymer concrete (BFPC) machine tool has the properties of lightweight and high damping, and the BFPC machine tool has excellent vibration damping and anti-vibration performance, which can improve the processing performance of the machine tool. There are many steel-BFPC jointsurfaces in the machine tool, and thesejoint surfaceshavea key influence on the dynamic performance such as the modal performance of the machine tool. In order to establish a virtual material simulation analysis method for modal characteristics of steel-BFPC joint surface, the detection principle of contact parameters of steel-BFPC joint surface was studied by using forced vibration theory, and the contact parameter detection experiment of steel-BFPC joint surface was designed. The virtual material model of BFPC joint surface was established, and the theoretical formulas of equivalent elastic modulus and equivalent shear modulus were derived based on the identified parameters of the BFPC joint surface. For the correctness of the analysis theory, a BFPC bed was taken as an example to study the modal performance of the BFPC bed by means of experiment and virtual material simulation analysis, respectively. The results of simulation analysis were compared with the experimental results. The results show that the maximum error of thenatural frequency is only 6.23%, and the modes of each order are consistent, which prove the effectiveness and accuracy of the virtual material simulation analysis method.


2012 ◽  
Vol 40 (1) ◽  
pp. 25-41 ◽  
Author(s):  
H. M. R. Aboutorabi ◽  
L. Kung

Abstract REFERENCE: H. M. R. Aboutorabi and L. Kung, “Application of Coupled Structural Acoustic Analysis and Sensitivity Calculations to a Tire Noise Problem,” Tire Science and Technology, TSTCA, Vol. 40, No. 1, January – March 2012, pp. 25–41. ABSTRACT: Tire qualification for an original equipment (OE) program consists of several rounds of submissions by the tire manufacturer for evaluation by the vehicle manufacturer. Tires are evaluated both subjectively, where the tire performance is rated by an expert driver, and objectively, where sensors and testing instruments are used to measure the tire performance. At the end of each round of testing the evaluation results are shared and requirements for performance improvement for the next round are communicated with the tire manufacturer. As building and testing is both expensive and time consuming predictive modeling and simulation analysis that can be applied to the performance of the tire is of great interest and value. This paper presents an application of finite element analysis (FEA) modeling along with experimental verification to solve tire noise objections at certain frequencies raised by an original equipment manufacturer (OEM) account. Coupled structural-acoustic analysis method was used to find modal characteristics of the tire at the objectionable frequencies. Sensitivity calculations were then carried out to evaluate the strength of contribution from each tire component to the identified modes. Based on these findings changes to the construction were proposed and implemented that addressed the noise issue.


2013 ◽  
Vol 644 ◽  
pp. 304-307 ◽  
Author(s):  
Chang Shun Wang

The different clearances of main bearing of previously designed on EQ6100 model gasoline engine is diagnosed by means of vibration monitoring mechanism. Breakdown signals of main test on different speed, clearance of main bearing, test spot and weather were analyzed by Spectral Analysis method and compared with normal and abnormal vibration signals. As a result, the characteristic parameters and the identifying methods of breakdown are given. In addition, the problems of fault detection are pointed out.


2008 ◽  
Vol 400-402 ◽  
pp. 593-598
Author(s):  
Wei Xing Shi ◽  
Cheng Qing Liu ◽  
Xi Lin Lu ◽  
Song Zhang ◽  
Ying Zhou

A shaking table model test is conducted for Guangzhou West Tower to study its seismic behavior in State Key Laboratory for Disaster Reduction in Civil Engineering at Tongji University. Guangzhou West Tower adopts a new structure system and the significant characteristic of this system is the non-perpendicular frame arranged around the building, acting both as columns and bracings. Based on the similarity theory and member equivalent principle,a 1/80 scale model of this building is made of polymethyl methacrylate(PMMA). The model’s dynamic characteristics, earthquake-resistant behavior, responses of acceleration and deformation under different wave peak values are investigated, then the seismic responses of the prototype structure are deduced and analyzed. The whiplash effect of the prototype structure is studied, and the weak position of the structure is found out. The experiment results demonstrate that it is feasible to apply this structural type to practical engineering. Finally, some suggestions for the engineering design of the prototype structure are put forward.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Junli Shi ◽  
Junyu Hu ◽  
Mingyang Ma ◽  
Huaizhi Wang

Purpose The purpose of this paper is to present a method for the environmental impact analysis of machine-tool cutting, which enables the detailed analysis of inventory data on resource consumption and waste emissions, as well as the quantitative evaluation of environmental impact. Design/methodology/approach The proposed environmental impact analysis method is based on the life cycle assessment (LCA) methodology. In this method, the system boundary of the cutting unit is first defined, and inventory data on energy and material consumptions are analyzed. Subsequently, through classification, five important environmental impact categories are proposed, namely, primary energy demand, global warming potential, acidification potential, eutrophication potential and photochemical ozone creation potential. Finally, the environmental impact results are obtained through characterization and normalization. Findings This method is applied on a case study involving a machine-tool turning unit. Results show that primary energy demand and global warming potential exert the serious environmental impact in the turning unit. Suggestions for improving the environmental performance of the machine-tool turning are proposed. Originality/value The environmental impact analysis method is applicable to different machine tools and cutting-unit processes. Moreover, it can guide and support the development of green manufacturing by machinery manufacturers.


Author(s):  
Shenggang Guo ◽  
Zhiling Yuan ◽  
Fenghe Wu ◽  
Yongxin Li ◽  
Shaoshuai Wang ◽  
...  

The selection of biomimetic prototypes mostly depends on the subjective observation of a designer. This research uses TRIZ to explore some inferential steps in bionic design of the heavy machine tool column. Conflict resolution theory of TRIZ is applied to describe improved and deteriorated parameters and a contradiction matrix is used to obtain recommended inventive principles. A reference table of solutions corresponding to the biological phenomenon and TRIZ solutions is formed to expedite retrieving the biomimetic object. Based on the table, herbaceous hollow stem is selected to imitate column structure. Four kinds of plant are chosen from the biological database. To select the best from four candidates, a bionic ideality evaluation index is proposed based on similarity analysis and ideality evaluation theory in TRIZ. Thus, the bionic effect can be described and compared quantitatively. Bionic configuration is then evolved concerning manufacturing requirements. Size optimization of stiffener thicknesses is implemented finally, and satisfactory results of the lightweight effect is obtained.


2018 ◽  
Vol 25 (5) ◽  
pp. 984-995 ◽  
Author(s):  
Kun Luo ◽  
Xiaoyan Lei

Based on the model similarity theory, this article deduces the model similarity relationship of the elevated railway box girder at the elastic stage and designs a 1/10 box girder scale model by adopting a 32 m simply-supported box girder bridge from the Beijing–Shanghai Railway as the prototype. It then verifies the validity of the model design and the dynamic similarity between the 1/10 model and the prototype through constraint mode and free mode experiments on the 1/10 scale model, together with transient finite element calculation. The dynamic calculation model is utilized here for the analysis of the errors occurring in the production of the model, and the effect of the model structure simplification on the box girder mode frequency and vibration response. Finally, the article studies the vibration transmissibility characteristics between the plates and along the longitudinal direction by means of model testing. It also discusses the effect of different bridge support stiffness on the box girder vibration. The results presented in this paper can provide a method for forecasting and evaluating the existing or plan-to-build high speed railway environment vibration.


MRS Bulletin ◽  
1987 ◽  
Vol 12 (6) ◽  
pp. 52-59 ◽  
Author(s):  
J.B. Pallix ◽  
C.H. Becker ◽  
N. Newman

AbstractAn overview is presented of a recently developed surface analysis method that combines (1) desorption of neutral atoms and molecules from a sample, typically by sputtering, (2) efficient uniform ionization close to but above the surface by an intense ultraviolet laser beam, and (3) time-of-flight mass spectrometry. This technique, surface analysis by laser ionization, or SALI, provides extremely efficient and sensitive quantitative analysis of surfaces and materials with high depth resolution. Essentially any type of material can be analyzed as evidenced by the examples presented here: the Au-GaAs system, a phosphor-silicate glass, and a bulk polymer.


Sign in / Sign up

Export Citation Format

Share Document