The Practice of Concrete Filled Steel Tube Piers to Bridges: A Review

2013 ◽  
Vol 405-408 ◽  
pp. 1602-1605 ◽  
Author(s):  
Zhi Jing Ou

Due to the small section dimension, high compressive strength, large stiffness, and excellent deformation capacity, the use of concrete filled steel tube (CFST) piers is attractive, especially to high-pier and super-high-pier bridges located in mountains. This paper reviews available information concerning the application and development of CFST piers. Three bridge examples are then introduced, while the structural design and the construction methods of CFST column piers are described in detail. Furthermore, main parameters of CFST piers, such as slenderness ratio and material strength are concluded. Finally the future research direction of CFST column piers is viewed.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Muhammad Aun Bashir

Concrete filled steel tube structures are becoming very popular in the modern civil engineering projects. Studying composite structures is useful, since it is an innovative and contemporary way to build structures. This type of structure has the ability to use respective strength of both steel and concrete due to confinement. Prefabrication of steel tube section is beneficial, and allows rapid installation into main structure. It also reduces the assembly cost and construction time. This paper will present the simple equation to predict the compressive strength of square concrete filled steel tube by using Finite Element Analysis (FEA)based software ABAQUs. In this study, 3D non-linear finite element models of short square composite columns were prepared using ABAQUS. The results were compared with published experimental tests of a concrete filled steel tube short columns. After getting the good agreement with the experimental results, a simple equation for the prediction of compressive strength is presented by considering the width to thickness ratio of steel tube. Results are validated with experimental results. The equation can predict the compressive strength only for the given material strengths and in future, the simple equation can be improved by considering different parameters e.g. material strength, slenderness ratio and end conditions.


2019 ◽  
Vol 19 (4) ◽  
pp. 170-184
Author(s):  
Minsheng Guan ◽  
Siying Lin ◽  
Hongbiao Du ◽  
Jie Cui ◽  
Taizhou Yan

Abstract The paper aims to select a simple and effective damage index for estimating the extent of damage of rectangular concrete-filled steel tube (RCFT) structures subjected to ground motions. Two experimental databases of cyclic tests conducted on RCFT columns and frames are compiled. Test results from the database are then used to evaluate six different damage indices, including the ductility ratio (μ), drift ratio, initial-to-secant stiffness ratio (DKJ), modified initial-to-secant stiffness ratio (Dms), energy coefficient (E), and the combined damage index (DPA) as a benchmark indicator. Selection criteria including correlation, efficiency, and proficiency are utilized in the selection process. The optimal alternative for DPA is identified on the basis of a comprehensive evaluation. The evaluations indicate that Dms previously proposed by some of the authors is the most appropriate substitution of DPA, followed by the drift ratio. For the case of the slenderness ratio less than or equal to 30, the same grades of relation between the investigated damage indices and the benchmark are observed. However, in the case of the slenderness ratio larger than 30, the drift ratio tends to be the optimal alternative. In most cases, μ is proved to be an inadequate replacement of DPA.


2020 ◽  
Vol 13 (5) ◽  
pp. 193-198
Author(s):  
Abdullah Al-Shwaiter ◽  
◽  
Hanizam Awang ◽  
Ziyad Al-Gaboby

Using waste tyres as recycle material in the construction industry seems to be a good solution to the problem of waste management and landfill. The main purpose of this paper is to study the behaviour of rubberized concrete-filled steel tube (RuCFST) analytically for square and rectangular columns under lateral monotonic loading. Seventy-two prototypes modelled using ABAQUS 6.12-1 software with various variables, which are cross-section shape, rubber replacement as a percentage of natural aggregate, column length, sections slenderness ratio and the axial loading level. The results showed that the adopted model in elastic and plastic properties gives a good agreement between numerical and referenced experimental results. Moreover, increasing the rubber replacement percentage has no major effect on the columns’ capacity; meanwhile increasing the columns’ length lead to decrease the strength capacity dramatically. Furthermore, increasing the axial loading percentage leads to reduce the column lateral strength. Similarly, the columns’ capacity decreases with increasing the section slenderness ratio.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jing Ji ◽  
Maomao Yang ◽  
Zhichao Xu ◽  
Liangqin Jiang ◽  
Huayu Song

The behavior of H-shaped honeycombed stub columns with rectangular concrete-filled steel tube flanges (STHCCs) subjected to axial load was investigated experimentally. A total of 16 specimens were studied, and the main parameters varied in the tests included the confinement effect coefficient of the steel tube (ξ), the concrete cubic compressive strength (fcu), the steel web thickness (t2), and the slenderness ratio of specimens (λs). Failure modes, load-displacement curves, load-strain curves of the steel tube flanges and webs, and force mechanisms were obtained by means of axial compression tests. The parameter influences on the axial compression bearing capacity and ductility were then analyzed. The results showed that rudder slip diagonal lines occur on the steel tube outer surface and the concrete-filled steel tube flanges of all specimens exhibit shear failure. Specimen load-displacement curves can be broadly divided into elastic deformation, elastic-plastic deformation, and load descending and residual deformation stages. The specimen axial compression bearing capacity and ductility increase with increasing ξ, and the axial compression bearing capacity increases gradually with increasing fcu, whereas the ductility decreases. The ductility significantly improves with increasing t2, whereas the axial compression bearing capacity increases slightly. The axial compression bearing capacity decreases gradually with increasing λs, whereas the ductility increases. An analytical expression for the STHCC short column axial compression bearing capacity is established by introducing a correction function ( w ), which has good agreement with experimental results. Finally, several design guidelines are suggested, which can provide a foundation for the popularization and application of this kind of novel composite column in practical engineering projects.


2015 ◽  
Vol 53 (2) ◽  
pp. 205-212
Author(s):  
T. Ohya ◽  
H. Takahashi ◽  
T. Tokuhiro ◽  
Y. Koshiro

2018 ◽  
Vol 22 (6) ◽  
pp. 1297-1311
Author(s):  
Yan Li ◽  
Xiaolong Ma ◽  
Wei Zhang

The dynamic performance of a new type of concrete-filled steel tube high-pier curved continuous truss girder bridges under moving vehicles is studied combining field testing and numerical simulation method by an actual bridge example. The dynamic response data were obtained before opening to traffic for the bridge under moving testing vehicles. A three-dimensional vehicle and bridge coupled vibration analysis model for curved bridges is proposed and validated. The dynamic behavior characteristics and vehicular ride comfort for this new type bridge are studied considering variable road surface and other conditions. The results indicate that the dynamic impacts of this bridge from vehicles are underestimated compared with those defined in the design code. In addition, the dynamic impact factors vary significantly for the local components and some of them could exceed the design value. Finally, the riding comfort of this bridge is evaluated, which suggests a fairly uncomfortable condition.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4839
Author(s):  
Jinglin Fan ◽  
Fei Lyu ◽  
Faxing Ding ◽  
Dan Bu ◽  
Siqing Wang ◽  
...  

Numerous studies have been carried out on the axially loaded circular concrete-filled steel tube (CCFST) stub columns. However, to date, no clear evaluation criterion for the compatibility of its design parameters has been established. In the present study, the compatibility of the design parameters (concrete compressive strength fc, steel yield strength fy, diameter D and thickness of steel tube t) of axially loaded CCFST stub columns was quantitatively investigated in terms of the contribution of the composite actions to the axial bearing capacity of the columns. The composite ratio λ was proposed as an indicator to represent the effectiveness of the composite actions. A numerical framework of the determination of λ was established, making use of a series of existing widely recognized constitutive models of structural steel and concrete. Some modifications were carried out on these models to ensure the numerical stability of the presented analysis. Moreover, the rationality of the combined use of these models was verified. The analytical results show that excessive or very small D/t ratio should be avoided in design. Meanwhile, the combined use of low-strength steel and high-strength concrete should be avoided. A table of optimal D/t ratios corresponding to different material strength matches was provided for designers. Finally, an optimization of the design parameters using the proposed method and the existing design specification was performed.


2013 ◽  
Vol 405-408 ◽  
pp. 1041-1045 ◽  
Author(s):  
Lian Qiong Zheng ◽  
Shu Li Guo ◽  
Ji Zhong Zhou

A simplified method using an equivalent slenderness ratio was suggested to calculate load-bearing capacity of concrete-filled steel tubular laced column in this paper. The significant differences between compressive and tensile strengths of concrete-filled steel tube were considered. The comparisons between the predicted Nuc and the tested Nue showed that the predicted method gives generally good predictions of the test results.


2012 ◽  
Vol 446-449 ◽  
pp. 550-555
Author(s):  
Teng Fei Xu ◽  
Tian Yu Xiang ◽  
Yu Lin Zhan ◽  
Ren Da Zhao

Most of the previous researches on the concrete-filled steel tube are restricted to deterministic approach. To give a clearer insight about random properties of circular concrete-filled steel tube, reliability analysis is carried in the present study. Material and geometrical nonlinear analysis of a circular concrete-filled steel tube is performed with a three-dimensional degenerated beam element, which can efficiently obtain the structural nonlinear responses. Through the combination of first order reliability method and nonlinear finite element analysis, the reliability about ultimate resistance capacity of the concrete-filled steel tube is investigated. The influences of parameters such as material strength, slenderness, initial geometrical imperfection, and etc. on reliability of circular concrete-filled steel tube column are studied. Some conclusions obtained from reliability analysis may be beneficial for rational analysis and design of the concrete-filled steel tube in practical engineer structures.


2022 ◽  
Vol 2022 ◽  
pp. 1-21
Author(s):  
Jing Ji ◽  
Chenyu Yu ◽  
Liangqin Jiang ◽  
Jiedong Zhan ◽  
Hongguo Ren ◽  
...  

In order to investigate the bearing capacity of H-shaped honeycombed steel web composite columns with rectangular concrete-filled steel tube flanges (STHCCs) subjected to eccentrical compression load, 33 full-scale STHCCs were designed with the eccentricity(e), the slenderness ratio (λ), the cubic compressive strength of concrete(fcuk), the thickness of the steel tube flange (t1), the thickness of honeycombed steel web (t2), diameter-depth ratio (d/hw), space-depth (s/hw), and the yield strength of the steel tube (fy) as the main parameters. Considering the nonlinear constitutive model of concrete and simplified constitutive model of steel, the finite element (FE) model of STHCCs was established by ABAQUS software. By comparison with the existing test results, the rationality of the constitutive model of materials and FE modeling was verified. The numerical simulation of 33 full-scale STHCCs was conducted, and the influence of different parameters on the ultimate eccentrical compression bearing capacity was discussed. The results show that the cross-sectional stress distribution basically conforms to the plane-section assumption. With the increase in e, λ, and d/hw, the ultimate eccentrical compression bearing capacity of the full-scale STHCCs decreases, whereas it gradually increases with the increase in fcuk, t1, t2, s/hw, and fy. By introducing bias-stress stability coefficient (φ), the calculation formula of full-scale STHCCs under eccentrical compression is proposed by statistical regression, which can lay a foundation for the popularization and application of these types of composite columns in practical engineering.


Sign in / Sign up

Export Citation Format

Share Document