Preparation and Methylene Blue Adsorption Characteristics of Highly Mesoporous Rice Husk Active Carbon Prepared by an Alkali-Saving and Equipment-Friendly Method

2013 ◽  
Vol 448-453 ◽  
pp. 182-187 ◽  
Author(s):  
Da Wei Li ◽  
Xi Feng Zhu

Highly mesoporous active carbon for removing methylene blue (MB) from aqueous solution was prepared from pyrolyzed rice husk by combination of CO2activation and NaOH-solution boiling. The preparation method was found to be alkali-saving and equipment-friendly. The prepared active carbon exhibited high mesoporosity (79.1%), with mesopore volume and specific surface area up to 0.619 mL/g and 899 m2/g, respectively. At initial MB concentrations of 240-380 mg/L, the MB removal efficiency of the prepared active carbon ranged from 92% to more than 99%, fairly comparable to that of the highly mesoporous commercial active carbon used for reference. The adsorption of MB onto the prepared active carbon well followed the pseudo second-order kinetic model and Langmuir isotherm. This study indicated that highly mesoporous active carbon with large dye removal efficiency could be prepared from rice husk by an alkali-saving and equipment-friendly process.

2013 ◽  
Vol 361-363 ◽  
pp. 760-763 ◽  
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Hao Li

The adsorption capacity was compared for the dye wastewater onto adsorbent MnO2. The effects of contact time and dosage of adsorbent were studied. The adsorption kinetics was analyzed. The results showed that MnO2 possessed higher adsorption capacity to Methylene blue than Methyl orange which the removal efficiency could reached 94.82%and 78.63% respectively under the conditions (the dosage1.2g/L, time 60min, initial dye concentration 50mg/L, pH7). The dynamical data fit well with the pseudo second order kinetic model. The MnO2 has higher Methylene blue adsorption capacity in short equilibrium times and are good alternative in wastewater treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ebenezer Annan ◽  
Grace Karikari Arkorful ◽  
David Sasu Konadu ◽  
Bernard Asimeng ◽  
David Dodoo-Arhin ◽  
...  

Dyes used by the textile, tannery, and food industries tend to pollute water bodies and must be removed to get clean water. Hydroxyapatite (HAP) was synthesized from eggshells using the wet precipitation process. The as-synthesized HAP was characterized using Fourier Transform Infrared (FTIR) and X-ray powder diffraction (XRD). The synthesized HAP was mixed with three different clays: halloysite (HNT), kaolinite (KAO), and bentonite (BENT). The removal efficiency values of methylene blue (MB) from the data showed that HAP-BENT adsorbents had higher values, followed by HAP-HNT and then HAP-KAO adsorbents. The combined masses of 24 mg, 34.5 mg, and 33 mg (representing 20%, 15%, and 10% of HAP-BENT mass) had average adsorption capacity values of 20.7 mg/g, 17.2 mg/g, and 17.9 mg/g, respectively. For each mass percentage, the adsorption capacity values were found to decrease with adsorbent dosage. The HAP-BENT composites had removal efficiency values of 98.4, 91.9%, and 91.9%, respectively. Adsorption data for the HAP-BENT adsorbents were found to be well described by the Langmuir isotherm model and pseudo-second-order kinetic model. The effect of temperature on adsorption capacity was evaluated and thermodynamical modeling was undertaken. The thermodynamical modeling predicts that based on the value of the change in enthalpy and Gibbs free energy the process was exothermic and spontaneous. This work confirms the potential of HAP-clay composites in removing MB from water.


2018 ◽  
Vol 21 (8) ◽  
pp. 583-593 ◽  
Author(s):  
Sara Rahnama ◽  
Shahab Shariati ◽  
Faten Divsar

Objective: In this research, a novel magnetite titanium dioxide nanocomposite functionalized by amine groups (Fe3O4@SiO2@TiO2-NH2) was synthesized and its ability for efficient removal of Acid Fuchsine as an anionic dye from aqueous solutions was investigated. Method: The core-shell structure of Fe3O4@SiO2@TiO2 was prepared using Fe3O4 as magnetic core, tetra ethyl orthosilicate as silica and tetra butyl titanate as titanium source for shell. The synthesized nanocomposites (particle size lower than 44 nm) were characterized by FT-IR, XRD, DRS, SEM and TGA instruments. The various experimental parameters affecting dye removal efficiency were investigated and optimized using Taguchi fractional factorial design. Results: The synthesized adsorbent showed the highest removal efficiency of Acid Fuchsine (99 %) at pH= 3.5, without salt addition and during stirring at contact times less than 10 minutes. The study of kinetic models at two concentration levels showed the fast dye sorption on the surface of proposed nanocomposites with pseudo second order kinetic model (R2=1). Also, the fitting of Acid Fuchsine sorption data to Freundlich, Langmuir and Temkin isotherms suggested that Freundlich model gave a better fitting than other models (R2=0.9936, n=2). Conclusion: Good chemical stability, excellent magnetic properties, very fast adsorption kinetics and high removal efficiency make the synthesized nanocomposite as a proper recoverable sorbent for removal of Acid Fuchsine dye from wastewaters.


2015 ◽  
Vol 5 (1) ◽  
pp. 45
Author(s):  
Tchuifon Tchuifon Donald Raoul ◽  
Nche George Ndifor-Angwafor ◽  
Ngakou Sadeu Christian ◽  
Kamgaing Théophile ◽  
Ngomo Horace Manga ◽  
...  

<p>The present study is based on the adsorption of cadmium (II) ions on rice husk and egussi peeling, unmodified and modified with nitric acid in aqueous solution, using batch technique. It was carried out as a function of contact time, dosage, pH and initial concentration. The equilibrium time was achieved within 25 minutes for unmodified rice husk (Glu NT) and 20 minutes for unmodified egussi peeling (Cuc NT) with an adsorbed quantity of 13.18 mg/g. In the case of modified materials, we obtained 15 minutes for modified rice husk (Glu HNO3) and 10 minutes for modified egussi peeling (Cuc HNO3) with an adsorbed quantity of 18.77 mg/g. The maximum biosorption occurred at pH 5.5 for all biosorbents. The adsorbent mass for maximum adsorption was 0.4 g giving an adsorption capacity of 62.02 % for unmodified adsorbents. In the case of modified adsorbents, the minimal mass at which maximum adsorption occurred was 0.4 g giving an adsorption capacity of 98.33 % and 0.6 g giving an adsorption capacity of 98.33 % for modified rice husk and egussi peeling respectively. The adsorbent/adsorbate equilibrium was well described by the pseudo-second order kinetic model and by Langmuir’s and Freundlich adsorption model. This models showed that the adsorption of cadmium (II) is a chemisorption process.</p>


2018 ◽  
Vol 83 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Zdravka Velkova ◽  
Gergana Kirova ◽  
Margarita Stoytcheva ◽  
Velizar Gochev

Pretreated waste Streptomyces fradiae biomass was utilized as an eco-friendly sorbent for Congo Red (CR) and Methylene Blue (MB) removal from aqueous solutions. The biosorbent was characterized by Fourier transform infrared spectroscopy. Batch experiments were conducted to study the effect of pH, biosorbent dosage, initial concentration of adsorbates, contact time and temperature on the biosorption of the two dyes. The equilibrium adsorption data were analysed using Freundlich and Langmuir models. Both models fitted well the experimental data. The maximum biosorption capacity of the pretreated Streptomyces fradiae biomass was 46.64 mg g-1 for CR and 59.63 mg g-1 for MB, at a pH 6.0, with the contact time of 120 min, the biosorbent dosage of 2 g dm-3 and the temperature of 298 K. Lagergren and Ho kinetic models were used to analyse the kinetic data obtained from different batch experiments. The biosorption of both dyes followed better the pseudo-second order kinetic model. The calculated values for ?G, ?S, and ?H indicated that the biosorption of CR and MB onto the waste pretreated biomass was feasible, spontaneous, and exothermic in the selected temperature range and conditions.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


Author(s):  
Juraj Michálek ◽  
Kseniya Domnina ◽  
Veronika Kvorková ◽  
Kristína Šefčovičová ◽  
Klaudia Mončeková ◽  
...  

Abstract The usage of the low-cost catalysts for methylene blue removal from wastewater was investigated. Heterogeneous Fenton-like process consists of the use of a hydrogen peroxide solution, and an iron-rich catalyst, red mud and black nickel mud were used for that purpose. The factors such as the catalyst dose and the hydrogen peroxide solution volume were monitored. The results of experiments showed that the degradation of methylene blue dye in Fenton-like oxidation process using selected catalysts can be described by a pseudo-second-order kinetic model. The highest dye removal efficiency (87.15 %) was achieved using the black nickel mud catalyst after 30 minutes of reaction.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2295 ◽  
Author(s):  
Souad Rakass ◽  
Hicham Oudghiri Hassani ◽  
Mostafa Abboudi ◽  
Fethi Kooli ◽  
Ahmed Mohmoud ◽  
...  

Nano Molybdenum trioxide (α-MoO3) was synthesized in an easy and efficient approach. The removal of methylene blue (MB) in aqueous solutions was studied using this material. The effects of various experimental parameters, for example contact time, pH, temperature and initial MB concentration on removal capacity were explored. The removal of MB was significantly affected by pH and temperature and higher values resulted in increase of removal capacity of MB. The removal efficiency of Methylene blue was 100% at pH = 11 for initial dye concentrations lower than 150 ppm, with a maximum removal capacity of 152 mg/g of MB as gathered from Langmuir model. By comparing the kinetic models (pseudo first-order, pseudo second-order and intraparticle diffusion model) at various conditions, it has been found that the pseudo second-order kinetic model correlates with the experimental data well. The thermodynamic study indicated that the removal was endothermic, spontaneous and favorable. The thermal regeneration studies indicated that the removal efficiency (99%) was maintained after four cycles of use. Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM) confirmed the presence of the MB dye on the α-MoO3 nanoparticles after adsorption and regeneration. The α-MoO3 nanosorbent showed excellent removal efficiency before and after regeneration, suggesting that it can be used as a promising adsorbent for removing Methylene blue dye from wastewater.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaodong Li

Using straw and urea as raw materials, biochar (BC) and g-C3N4 were prepared by oxygen-free pyrolysis at 300°C and 550°C. BC/g-C3N4 was prepared by loading different amounts of g-C3N4 onto the surface of biochar and characterized by SEM and FT-IR. The adsorption effect on methylene blue (MB) was investigated from the aspects of dosage and pH. The studies of adsorption equilibrium isotherms and the kinetic and the thermodynamic parameters on the BC/g-C3N4 adsorbents are discussed. The results showed that BC/g-C3N4 0.16 g/L with a doping ratio of 1 : 3 was added to the MB solution with an initial concentration of 50 mg/L and pH=11. The adsorption rate and adsorption amount were 96.72% and 302.25 mg/g, respectively. The adsorption process included surface adsorption and intraparticle diffusion, which conformed to the pseudo-second-order kinetic model and Langmuir-Freundlich model. Thermodynamic parameters (ΔG0<0, ΔH0>0, and ΔS0>0) showed that the adsorption reaction is spontaneous, which positively correlated with temperature.


Sign in / Sign up

Export Citation Format

Share Document