Mechanical Properties of Fiber Reinforced Self-Compacting Concrete

2013 ◽  
Vol 470 ◽  
pp. 797-801 ◽  
Author(s):  
Wu Jian Long ◽  
Han Xin Lin ◽  
Zhen Rong Chen ◽  
Kai Long Zhang ◽  
Wei Lun Wang

The mechanical strengths of self-compacting concrete (SCC) with different strengths and different fibers were investigated. By mechanics performance testing on concrete samples, it shows that the fiber can significantly reduce strength of the self-compacting concrete during curing period. The 28d tensile strength of self-compacting concrete can be improved when steel fiber, polypropylene fiber, or polyethylene fiber were used. Moreover, steel fiber can improve the 28d compressive strength; contrarily, polypropylene fiber and polyethylene fiber can reduce the 28d compressive strength.

2018 ◽  
Vol 4 (4) ◽  
pp. 776 ◽  
Author(s):  
Mushtaq Ahmad ◽  
Sana Ullah ◽  
Aneel Manan ◽  
Temple Chimuanya Odimegeu ◽  
Salmia Beddu

The study has conducted to determine the workability and compressive strength of the self –compacting concrete. The sand has replaced with quarry dust with the proportion of 10, 20, 30 and 40% and super plasticizer was added 0.9%. The experiments were carried out at the Infrastructure University Kuala Lumpur (IUKL) concrete laboratory. Slump flow, J- Ring tests were carried out to determine the workability of self-compacting concrete and compressive strength test was conducted on 7 days and 28th days of curing period. A finding of the study shows that workability and compressive strength has increased by addition of quarry dust. It is concluded that addition of quarry dust up to 30%  improve the workability of the self-compacting concrete and further addition of quarry dust decrease the workability. Additionally, compressive strength of the quarry dust modified self-compacting concrete shows the trend of higher compressive strength up to 30% addition of quarry dust with sand replacement and further addition decrease the compressive strength.


Author(s):  
Youcef Ghernouti ◽  
Bahia Rabehi ◽  
Sabria Malika Mansour

In this paper, influence of heat treatment on evolution of mechanical strengths at early age, less than 24hours of self-compacting concretes containing limestone powder and silica fume as fine materials was investigated experimentally. Two compositions of self-compacting concrete have been studied; the first is elaborated with silica fume addition and the second with limestone powder, each mixture were prepared with a constant water/binder ratio of 0.39. Concrete samples were either cured in water at (23±1°C), or steam cured at 65°C maximum temperature over six hours (6h) curing period. Tests of mechanical strengths were performed on specimens cooled down slowly to room temperature after heating.The obtained results show that all self-compacting mixtures exhibited satisfying fresh properties and check EFNARC specifications of self-compacting concrete (slump flow diameter higher than 650mm, L-box ratio higher than 80% and sieve stability less than 17%).Mechanical strengths of concrete containing limestone addition are slightly lower than those of concrete based on silica fume at all ages. Moreover, heat treatment generates an improvement of compressive and flexural strength. Interesting compressive strengths are obtained. At 24 hours, after heat treatment, the strengths are already greater than 35 MPa. The values ​​are 37 MPa and 40 MPa for self-compacting concrete containing limestone powder and silica fume respectively compared to 40 MPa and 46 MPa obtained at 7 days for the corresponding non-heat treated concretes. Compressive strength gain of SCCs mixtures with limestone powder and with silica fume, undergoing heat treatment at the age of 24hours is 85% and 75% respectively compared to SCCs mixtures cured in water.


2011 ◽  
Vol 477 ◽  
pp. 274-279 ◽  
Author(s):  
Yi Xu ◽  
Lin Hua Jiang ◽  
Hong Qiang Chu ◽  
Lei Chen

In this study, the effects of fiber types on the mechanical properties of lightweight aggregate concretes were investigated. Three types of fibers, namely, polypropylene fiber, steel fiber and water hyacinth (Eichhornia crassipes) fiber, and two types of lightweight aggregates, namely, expanded polystyrene and ceramsite were used. The compressive strength and splitting tensile strength of concretes were tested. The results show that both the compressive strength and the splitting tensile strength were improved by adding a reasonable volume of steel fiber and polypropylene fiber into LWAC. The addition of water hyacinth fiber had little effect on the compressive strength of LWAC, while a little increase was observed in the splitting tensile strength.


2014 ◽  
Vol 11 (4) ◽  
pp. 323-330 ◽  
Author(s):  
S. Arivalagan

The present day world is witnessing the construction of very challenging and difficult civil engineering structures. Self-compacting concrete (SCC) offers several economic and technical benefits; the use of steel fiber extends its possibilities. Steel fiber acts as a bridge to retard their cracks propagation, and improve several characteristics and properties of the concrete. Therefore, an attempt has been made in this investigation to study the Flexural Behaviour of Steel Fiber Reinforced self compacting concrete incorporating silica fume in the structural elements. The self compacting concrete mixtures have a coarse aggregate replacement of 25% and 35% by weight of silica fume. Totally eight mixers are investigated in which cement content, water content, dosage of superplasticers were all constant. Slump flow time and diameter, J-Ring, V-funnel, and L-Box were performed to assess the fresh properties of the concrete. The variable in this study was percentage of volume fraction (1.0, 1.5) of steel fiber. Finally, five beams were to be casted for study, out of which one was made with conventional concrete, one with SCC (25% silica fume) and other were with SCC (25% silica fume + 1% of steel fiber, 25% silica fume + 1.5% of steel fiber) one with SCC (35% silica fume), and other were SCC (35% Silica fume + 1% of steel fiber, 35% Silica fume + 1.5% of steel fiber). Compressive strength, flexural strength of the concrete was determined for hardened concrete for 7 and 28 days. This investigation is also done to determine the increase the compressive strength by addition of silica fume by varying the percentage.


2010 ◽  
Vol 168-170 ◽  
pp. 1325-1329
Author(s):  
Ye Ran Zhu ◽  
Jun Cai ◽  
Dong Wang ◽  
Guo Hong Huang

This paper investigates the mechanical properties (compressive strength, splitting tensile strength and flexural toughness) of polypropylene fiber reinforced self-compacting concrete (PFRSCC). The effect of the incorporation of polypropylene fiber on the mechanical properties of PFRSCC is determined. Four point bending tests on beam specimens were performed to evaluate the flexural properties of PFRSCC. Test results indicate that flexural toughness and ductility are remarkably improved by the addition of polypropylene fiber.


2020 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Joseph Abah Apeh ◽  
Juliet Eyum Ameh

Self-compacting concrete (SCC) has great potentials as it offers several environmental, economic and technical benefits. Moreover, the use of fibers extends its possibilities since fibers arrest cracks and retard their propagation. Incorporation of Quarry Dust (QD) in SCC help to reduce environmental hazards during the production of QD. This study evaluated the fresh and hardened properties of steel fiber self-compacting concrete (SFSCC) incorporating QD. The optimum fiber and QD contents with no adverse effects on fresh and hardened properties were determined. A comparative study on behavior of SCC and SFSCC mixtures in terms of workability, compressive strength, compressive strength development ratio, tensile, flexural and energy absorption capacity was carried out. Test results showed that compressive strength increased with increase in QD contents at fixed fiber content by mass of Portland cement (PC) and then decreased. Strength development ratio (C28/C7) for SCC was 1.13, while it was 1.06, 1.08, 1.10 and 1.01 after reinforcing with 0.10, 0.20 and 0.30 contents of fiber. The compressive, tensile, flexural and energy absorption capacity or Toughness of SFSCC increased with the inclusion of the aforementioned contents of steel fiber up to 0.20 % volume of total binder at constant QD content and then decreased when compared with control SCC values. From these results, optimum value for the variables studied was obtained from mix QD20 + 0.2fr. Hence, steel fiber and QD could be successfully used in SCC production not minding the slight draw back on workability of SCC caused by inclusion of steel fiber, but with a modified dosage of super-plasticizer (SP), fresh and hardened properties, in accordance with specifications in relevant code(s) can be achieved.


2013 ◽  
Vol 275-277 ◽  
pp. 2041-2044
Author(s):  
Feng Yan ◽  
Nan Pang

In this paper,the mechanical properties were studied,the self compacting concrete cubic compression strength,prismatic compressive strength test,discussed two kinds of relationship between intensity index.


2010 ◽  
Vol 168-170 ◽  
pp. 456-459
Author(s):  
Hai Yan Yuan ◽  
Shui Zhang ◽  
Guo Zhong Li

By adopting the method of orthogonal experimental design, the effect of three independent variables, that is steel fiber fraction, polypropylene fiber fraction and silica fume fraction on the compressive strength, flexural strength and shrinkage of cement mortar was studied. The results indicate that steel fiber is one of the most important factors affecting compressive strength and shrinkage, and polypropylene fiber is one of the most important factors affecting flexural strength and shrinkage of cement mortar. By using deviation analysis to analyze the orthogonal experiment results, the optimized mix proportion of hybrid fiber reinforced cement mortar is determined. The hybrid effect of steel fiber and polypropylene fiber on the properties of cement mortar is discussed.


2014 ◽  
Vol 906 ◽  
pp. 329-334
Author(s):  
Yu Ting Zhu ◽  
Dong Tao Xia ◽  
Bo Ru Zhou

In this paper, according to the national standard and testing methods,the direct tension strength,splitting tensile strength and cubic compressive strength test were carried out for 8 different groups of hybrid fiber (containing steel fiber, macro-polypropylene fiber and dura fiber) reinforced HPC specimens.The results showed that when the volume proportion of ternary hybrid fiber was less than 1%, there was not obvious influence for the concrete compressive strength, but the splitting tensile strength increased by 26% ~ 69%; the ratio between splitting tensile strength and compressive strength for HFRC increased to 1/12~1/9. When added 0.7% steel fiber, 0.19% macro-polypropylene fiber and 0.11% dura fiber, the confounding effect was the best. Based on the advantages and disadvantages of tensile splitting strength and direct tensile strength test and the results of tests, the concept of equivalent tensile strength and calculative formula was put forward .


2021 ◽  
Vol 261 ◽  
pp. 02019
Author(s):  
Tu-Sheng He ◽  
Meng-Qian Xie ◽  
Yang Liu ◽  
San-Yin Zhao ◽  
Zai-Bo Li

The influence of steel fiber and polypropylene fiber mixed on compressive strength of high performance concrete (HPC) was studied. The steel fiber content (0.5%, 1.0%, 1.5%, 2.0%) (volume fraction, the same below), polypropylene fiber content (0.05%, 0.1%, 0.15%, 0.2%) and length (5mm, 6.5mm, 12mm, 18mm) were studied by L16 (45) orthogonal test for 28d ages, the range analysis and variance analysis of the test results are carried out, and the prediction model of compressive strength of hybrid fiber reinforced concrete was established. The results show that: The significant influence factor of concrete compressive strength is the volume fraction of polypropylene fiber, while the length of polypropylene fiber and the volume fraction of steel fiber are not significant; the concrete compressive strength with polypropylene fiber shows negative hybrid effect; The prediction model of compressive strength of hybrid fiber reinforced concrete has high accuracy, and the average relative errors is 2.96%.


Sign in / Sign up

Export Citation Format

Share Document