Preliminary Study of Fuel Injector Monitoring System by I-KazTM Multilevel Analysis

2013 ◽  
Vol 471 ◽  
pp. 229-234
Author(s):  
Zailan Karim ◽  
M.A. Jusoh ◽  
A.R. Bahari ◽  
Mohd Zaki Nuawi ◽  
Jaharah Abd. Ghani ◽  
...  

Fuel injector in automotive engine is a very important component in injecting the correct amount of fuel into the combustion chamber. The injection system need to be in a very safe and optimum condition during the engine operation. The mulfunction of the injection system can be avoided if the current working condition is known and a proper maintenence procedure is implemented. This paper proposes the development of a fuel injector monitoring method using strain signals captured by a single-channel strain gage attached on the fuel injector body. The fuel injector was operated under three main sets of parameters; pulse width (ms), frequency (Hz) and pressure (bar) which were varried from 5 ms to 15 ms, 17 Hz to 25 Hz and 10 bar to 70 bar respectively. The settings produce 27 different engine operations and the strain signal will be captured at each operation. The captured strain signals will be analyzed using I-kazTM Multilevel technique and will be correlated with the main parameters. The relationship between the I-kazTM Multilevel coefficient and the main parameters indicate good correlations which can be used as the guidance for fuel injector monitoring during actual operation. The I-kaz Multilevel technique was found to be very suitable in this study since it is capable of showing consistence pattern change at every parameter change during the engine operation. This monitoring system has a big potential to be developed and improved for the optimization of fuel injector system performance in the automotive industry.

2014 ◽  
Vol 663 ◽  
pp. 426-430
Author(s):  
C.L. Hoo ◽  
Mohd Zaki Nuawi ◽  
S.M. Haris ◽  
S. Abdullah ◽  
Ahmad Rasdan Ismail

The Fuel injector is an important component in a vehicle engine for determining the performance of an engine. It is believed that, by knowing the current state of the injector, one can take any prior safety measure and ensuring the optimal performance of the engine. However, it is very difficult to study and analyse the fuel injection system in real time during the operation of the vehicle. A study was conducted in developing a method to monitor the fuel injector using the strain signal generated from the strain gauge sensors installed on the fuel injector. This method is practically implementable and can be used on the actual operation of the engine. A research rig was developed in order to visualise the behaviour of the injector at any instant by obtaining the three key parameters from the strain gage sensors which are the pulse width (ms), frequency (Hz) and pressure (bar). All data obtained from this experiment will be analysed using the Matlab software, where the I-kaz (Z∞) will be applied as the main method to clearly visualize the operation of the machine. The result shows that for the same pulse width and pressure, the series have the same pattern for I-kaz coefficient. They have a consistent trend compared to the Skewness and Kurtosis parameters. This method serves to predict and describe the behaviour of the fuel injector to ease the monitoring task at any instant throughout the engine operation.


2018 ◽  
Vol 5 (4) ◽  
Author(s):  
Timofey Baranov ◽  
Evgeniy Tolstikov

Deviations in the operation of the operated bridge structures on the railway are detected when damage occurs. At the same time, early detection and prognosis of damage progress can be obtained using monitoring systems. The article presents the methods and technologies for the use of mobile monitoring systems for assessing the actual operation of the metal superstructure of the railway bridge with the main driving trusses. The hardware of the measuring complex is considered, the main measuring instrument is the glued electrical strain gauges. The monitoring system kept a continuous record of sensor readings for 28 days. To process the data received by the monitoring system, specialized software has been developed that systematizes the incoming information. Analysis of the actual supertructure operation is carried out by finding the relationship of stresses in the various elements of the superstructure, arising under the same load. This approach allowed us to exclude the factor of unknown intensity of the temporary load. The results of monitoring the work of the superstructure are given. In total, over 680 train passage records were analyzed, which allowed for a statistical description of the data. The theoretical values of the relationship of stresses in the elements of the superstructure are determined using the apparatus of the influence lines obtained by a numerical method. The conclusions are made about the distribution of deformations of the superstructure under temporary load and about the degree of compliance with theoretical calculations. The construction factors and the values of their statistical scatter are determined, the actual dynamic factors are statistically calculated. The construction factors calculated from the stress ratios lie in the range of 0.8-1.116. Dynamic factors are within 1.13 and do not exceed the rated values.


Author(s):  
Niha Kamal Basha ◽  
Aisha Banu Wahab

: Absence seizure is a type of brain disorder in which subject get into sudden lapses in attention. Which means sudden change in brain stimulation. Most of this type of disorder is widely found in children’s (5-18 years). These Electroencephalogram (EEG) signals are captured with long term monitoring system and are analyzed individually. In this paper, a Convolutional Neural Network to extract single channel EEG seizure features like Power, log sum of wavelet transform, cross correlation, and mean phase variance of each frame in a windows are extracted after pre-processing and classify them into normal or absence seizure class, is proposed as an empowerment of monitoring system by automatic detection of absence seizure. The training data is collected from the normal and absence seizure subjects in the form of Electroencephalogram. The objective is to perform automatic detection of absence seizure using single channel electroencephalogram signal as input. Here the data is used to train the proposed Convolutional Neural Network to extract and classify absence seizure. The Convolutional Neural Network consist of three layers 1] convolutional layer – which extract the features in the form of vector 2] Pooling layer – the dimensionality of output from convolutional layer is reduced and 3] Fully connected layer–the activation function called soft-max is used to find the probability distribution of output class. This paper goes through the automatic detection of absence seizure in detail and provide the comparative analysis of classification between Support Vector Machine and Convolutional Neural Network. The proposed approach outperforms the performance of Support Vector Machine by 80% in automatic detection of absence seizure and validated using confusion matrix.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yunjeong Yang ◽  
Ji Eun Kim ◽  
Hak Jin Song ◽  
Eun Bin Lee ◽  
Yong-Keun Choi ◽  
...  

Abstract Background Water content variation during plant growth is one of the most important monitoring parameters in plant studies. Conventional parameters (such as dry weight) are unreliable; thus, the development of rapid, accurate methods that will allow the monitoring of water content variation in live plants is necessary. In this study, we aimed to develop a non-invasive, radiofrequency-based monitoring system to rapidly and accurately detect water content variation in live plants. The changes in standing wave ratio (SWR) caused by the presence of stem water and magnetic particles in the stem water flow were used as the basis of plant monitoring systems. Results The SWR of a coil probe was used to develop a non-invasive monitoring system to detect water content variation in live plants. When water was added to the live experimental plants with or without illumination under drought conditions, noticeable SWR changes at various frequencies were observed. When a fixed frequency (1.611 GHz) was applied to a single experimental plant (Radermachera sinica), a more comprehensive monitoring, such as water content variation within the plant and the effect of illumination on water content, was achieved. Conclusions Our study demonstrated that the SWR of a coil probe could be used as a real-time, non-invasive, non-destructive parameter for detecting water content variation and practical vital activity in live plants. Our non-invasive monitoring method based on SWR may also be applied to various plant studies.


2014 ◽  
Vol 635-637 ◽  
pp. 750-754
Author(s):  
Peng Hu ◽  
Qing Li ◽  
Yi Wei Xu ◽  
Nan Ying Shentu ◽  
Quan Yuan Peng

Expound the importance of soil shear strength measurement at mudslide hidden point to release the loss caused by the disaster, explain the relationship between shear wave velocity, moisture content and shear strength, design the shear strength monitoring system combining the shear wave velocity measured by Piezoelectric bender elements and moisture content.


2013 ◽  
Vol 330 ◽  
pp. 364-367
Author(s):  
Shu Xin Liu ◽  
Yun Dong Cao ◽  
Chun Guang Hou ◽  
Yang Liu ◽  
Xiao Ming Liu

For improving reliable operation of switchgear in power system, an approach for on-line monitoring the insulation characteristic and bus-bar temperature rising of the switchgear is proposed in this paper. Through comparing several existing temperature measurement methods for monitoring temperature rising elevation at bus-bas, a new design of temperature monitoring method is proposed. It adopts quick-magnetic saturated current transformer, temperature sensor and infrared transmission to solve the problem of high voltage isolation. The epoxy resin insulation material which is commonly used in switchgear its aging mechanism data is not complete, seriously restrict on-line monitoring for switchgear, so thousands hours of aging experiment is done on switchgear, systematic study various electrical characteristics variation law on the gradual aging process of epoxy resin insulation materials. Therefore, study on the aging characteristics of switchgearinsulation and its lifetime estimation method is the key technology to understand agingmechanism better, search for new fault diagnostic method and the way to extend theuseful lifetime of switchgear. At last, the system runs in real system and the result shows the on-line monitoring system is stable and reliable which can be provide reference for on-line monitoring system design of switchgear.


2018 ◽  
Vol 173 (2) ◽  
pp. 3-8
Author(s):  
Mirosław KARCZEWSKI ◽  
Krzysztof KOLIŃSKI

Majority of modern diesel engines is fitted with common-rail (CR) fuel systems. In these systems, the injectors are supplied with fuel under high pressure from the fuel rail (accumulator). Dynamic changes of pressure in the fuel rail are caused by the phenomena occurring during the fuel injection into the cylinders and the fuel supply to the fuel rail through the high-pressure fuel pump. Any change in this process results in a change in the course of pressure in the fuel rail, which, upon mathematical processing of the fuel pressure signal, allows identification of the malfunction of the pump and the injectors. The paper presents a methodology of diagnosing of CR fuel injection system components based on the analysis of dynamic pressure changes in the fuel rail. In the performed investigations, the authors utilized LabView software and a µDAC data acquisition module recording the fuel pressure in the rail, the fuel injector control current and the signal from the camshaft position sensor. For the analysis of the obtained results, ‘FFT’ and ‘STFT’ were developed in order to detect inoperative injectors based on the curves of pressure in the fuel rail. The performed validation tests have confirmed the possibility of identification of malfunctions in the CR system based on the pressure curves in the fuel rail. The ‘FFT’ method provides more information related to the system itself and accurately shows the structure of the signal, while the ’STFT’ method presents the signal in such a way as to clearly identify the occurrence of the fuel injection. The advantage of the above methods is the accessibility to diagnostic parameters and their non-invasive nature.


2019 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Xin Sha ◽  
Lu Ruirui ◽  
He Yan ◽  
Xu Changming ◽  
Luo Yi

Author(s):  
H. K. Ma ◽  
S. H. Huang ◽  
B. R. Chen ◽  
Y. J. Huang

A novel design for an ethanol injection system has been proposed, which consists of the fuel injector, two valves, one pump chamber, and one piezoelectric device (central vibration). The system uses a micro-diaphragm pump with a piezoelectric device for the micro solid oxide fuel cells (SOFC), which operate at a low temperature (550 to 600 °C) and are supplied by Enerage Inc. The diameters of the pump chamber are 31 mm and 23mm, and the depths of the chamber are 1 mm and 2 mm. When the piezoelectric device actuates for changing pump chamber volume, the valves will be opened/closed, and the ethanol will be delivered into SOFC system due to its pressure variation. The dimensions of the injector chamber, vibration frequencies of piezoelectric (PZT) device, input voltages, and valve thickness and shape, are used as important parameters for the performance of the novel ethanol injection system. The experimental results show that the ethanol flow rate can reach 170ml/min at a piezoelectric device frequency of 75Hz. In addition, the ethanol flow rate is higher than the water flow rate.


Sign in / Sign up

Export Citation Format

Share Document