Research of the Influence of Dual Functional Hysteretic Dampers on Seismic Behavior of Structure with Big Openings

2013 ◽  
Vol 482 ◽  
pp. 217-220
Author(s):  
Yan Liu ◽  
Yan Li ◽  
Hui Ling Wang

The dissertation shows the formation and failure characteristic of the dual functional hysteretic dampers. SAP2000 was used to analyze the natural period of vibration and vibration mode of structures, the story drift under frequent earthquake and rare occurrence earthquake with different arrangements of dampers and the energy dissipation of dampers. The results show that dual functional hysteretic dampers keep elastic state under frequent earthquake while enter plastic state before the structure under rare occurrence earthquake.

2012 ◽  
Vol 28 (4) ◽  
pp. 1569-1587
Author(s):  
Juan Andres Oviedo-Amezquita ◽  
Mitsumasa Midorikawa ◽  
Tetsuhiro Asari

This paper investigates the seismic performance of story drift–controlled reinforced concrete (RC) frames with hysteretic dampers. The frame models include a wide range of mechanical properties of dampers, which are defined according to a proportion rule in order to explicitly control the yield story drift of dampers. The story drift response, hysteretic energy dissipation and other parameters are examined to evaluate the effectiveness of dampers. The influence of the global flexural deformation of the frame on the response of dampers is also examined, and an analytical procedure to account for this phenomenon is developed. The obtained results indicate that the seismic performance of the structure is improved by reducing the story drift demand and seismic damage uniformly over the building height. Regarding the global flexural deformation, the proposed analytical procedure can be used for a preliminary estimation of the story number up to which dampers yield before the RC frame.


2013 ◽  
Vol 477-478 ◽  
pp. 1096-1100
Author(s):  
Xiao Hong Zhou

After an introduction of the involve type of panelfrictional in-filled panel (FIP for short), a finite element model has been built to research on the seismic behavior of RC frame with different panels (FIP and traditional in-filled panel, TIP for short). The Taft wave was chosen for further seismic analysis. Results show that the layout schemes of FIP have significant influence to the story drift and slight influence to the acceleration of RC frame. Compared with the TIP, the FIP have almost no stiffening and strengthening effect to the frame, and showed a certain degree of energy dissipation effects, which indicate a good applicability in engineering.


1996 ◽  
Vol 18 (4) ◽  
pp. 14-22
Author(s):  
Vu Khac Bay

Investigation of the elastic state of curve beam system had been considered in [3]. In this paper the elastic-plastic state of curve beam system in the form of cylindrical shell is analyzed by the elastic solution method. Numerical results of the problem and conclusion are given.


2021 ◽  
Vol 11 (3) ◽  
pp. 1290
Author(s):  
Santiago Mota-Páez ◽  
David Escolano-Margarit ◽  
Amadeo Benavent-Climent

Reinforced concrete (RC) frame structures with open first stories and masonry infill walls at the upper stories are very common in seismic areas. Under strong earthquakes, most of the energy dissipation demand imposed by the earthquake concentrates in the first story, and this eventually leads the building to collapse. A very efficient and cost-effective solution for the seismic upgrading of this type of structure consists of installing hysteretic dampers in the first story. This paper investigates the response of RC soft-story frames retrofitted with hysteretic dampers subjected to near-fault ground motions in terms of maximum displacements and lateral seismic forces and compares them with those obtained by far-field earthquakes. It is found that for similar levels of total seismic input energy, the maximum displacements in the first story caused by near-fault earthquakes are about 1.3 times larger than those under far-field earthquakes, while the maximum inter-story drift in the upper stories and the distribution and values of the lateral forces are scarcely affected. It is concluded that the maximum displacements can be easily predicted from the energy balance of the structure by using appropriate values for the parameter that reflects the influence of the impulsivity of the ground motion: the so-called equivalent number of cycles.


2017 ◽  
Vol 27 (9) ◽  
pp. 1416-1447 ◽  
Author(s):  
Liu Jin ◽  
Shuai Zhang ◽  
Dong Li ◽  
Haibin Xu ◽  
Xiuli Du ◽  
...  

The results of an experimental program on eight short reinforced concrete columns having different structural sizes and axial compression ratios subjected to monotonic/cyclic lateral loading were reported. A 3D mesoscopic simulation method for the analysis of mechanical properties of reinforced concrete members was established, and then it was utilized as an important supplement and extension of the traditional experimental method. Lots of numerical trials, based on the restricted experimental results and the proposed 3D mesoscopic simulation method, were carried out to sufficiently evaluate the seismic performances of short reinforced concrete columns with different structural sizes and axial compression ratios. The test results indicate that (1) the failure pattern of reinforced concrete columns can be significantly affected by the shear-span ratio; (2) increasing the axial compression ratio could improve the load capacity of the reinforced concrete column, but the deformation capacity would be restricted and the failure mode would be more brittle, consequently the energy dissipation capacity could be deteriorated; and (3) the load capacity, the displacement ductility, and the energy dissipation capacity of the short reinforced concrete columns all exhibit clear size effect, namely, the size effect could significantly affect the seismic behavior of reinforced concrete columns.


2013 ◽  
Vol 351-352 ◽  
pp. 174-178
Author(s):  
Ying Zi Yin ◽  
Yan Zhang

With the pseudo-static test of 4 concrete-filled square steel tubular column and steel beam joint with outer stiffened ring, this paper discusses the failure characteristics, failure mechanism and seismic behavior of joints under different axial compression ratio. The analysis of the testing results shows: when reached the ultimate strength, the strength degradation and stiffness degradation of joints are slowly and the ductility is also good, the energy dissipation capacity of joints is much better.


2019 ◽  
Vol 22 (16) ◽  
pp. 3420-3434 ◽  
Author(s):  
Gang Li ◽  
Li-Hua Zhu ◽  
Hong-Nan Li

Passive energy dissipation devices have been proved to be effective and low-cost means of structural control, and a variety of dampers have been developed over the past decades. Hysteretic dampers with hardening post-yielding stiffness have multiphased energy dissipation characteristics because of their hardening behavior, which can compensate for stiffness loss and postpone the collapse of damaged structures. In this article, a hysteretic model is proposed for hysteretic dampers with hardening post-yielding stiffnesses, and a formula is derived for equivalent yield strength expressed by the additional damping of the structure. A procedure is developed for displacement-based seismic design that transforms the relatively complex damping into an acceptable yield strength. A numerical example is only presented for demonstrating the design process and simply validating the proposed method. The results show that the proposed procedure is easy to implement and could produce adequate hysteretic dampers with hardening post-yielding stiffness hardening behavior. The maximum displacement responses of the existing structure retrofitted using the proposed procedure satisfy the expected performance objective well. Thus, this procedure could be an alternative to seismic retrofitting for structures with energy dissipation systems.


2019 ◽  
Vol 14 (02) ◽  
pp. 2050007
Author(s):  
Xizhi Zhang ◽  
Shengbo Xu ◽  
Shaohua Zhang ◽  
Gaodong Xu

In this study, two types of novel box connections were developed to connect precast concrete (PC) columns and to ensure load transfer integrity. Cyclic loading tests were conducted to investigate the seismic behavior of the PC columns with proposed connections as well as the feasibility and reliability of novel box connections. The failure mode, hysteretic behavior, bearing capacity, ductility, stiffness degradation and energy dissipation were obtained and discussed. The test results indicated that the all PC columns exhibited the ductile flexural failure mode and that the proposed connections could transfer the force effectively. The adoption of novel box connections could improve the deformation capacity and energy dissipation capacity of PC columns. A higher axial compression ratio could enhance the bearing capacity of PC column with proposed connection but would significantly deteriorate the ductility and energy dissipation capacity. Finite element models were developed and the feasibility of the models was verified by the comparison with the test results.


Sign in / Sign up

Export Citation Format

Share Document