Effect of Diagenesis on the Formation Effective Reservoirs in Volcanic Rocks of Xujiaweizi Faulted-Sag

2014 ◽  
Vol 496-500 ◽  
pp. 3017-3021
Author(s):  
Zhi Jun Li ◽  
Ying Zhang ◽  
Xing Ming Wang

The volcanic reservoir of Yingcheng Formation in Xujiaweizi Faulted-Sag of Songliao Basin was systematically studied by analyzing the data of the core and cast thin slice. It was founded out that all effective reservoir underwent six diagenetic stages. That is why porosity evolution and physical property of those rocks were different from each other. The organic acid dissolution and CO2-bearing acidulous water dissolution,was the most useful diagenesis to the formation of effective reservoirs, secondary porosity developed mostly in the silicic volcanic rocks, which were easily dissolved by organic acid. Primary porosity system, faults and fractures, top/bottom unconformity surfaces of volcanic rocks are the key factors to dissolution.

2020 ◽  
Vol 194 ◽  
pp. 01038
Author(s):  
WANG Jia ◽  
ZHOU Yue

Types of deep reservoir rich in Yingcheng formation of Xudong area in Xujiaweizi fault depression, the study of volcanic rocks of Yingcheng formation in the main, using the date of core, logging, oil test, from lithology, lithofacies and physical properties to study volcanic reservoir characteristics. The main lithology of volcanic reservoir in Yingcheng formation of Xudong area include rhyolite, rhyolitic tuff, rhyolitic tuff fused, rhyolitic breccia and rhyolitic tuff breccia. In accordance with lithology combination of features, volcanic facies can be divided into volcanic explosive facies, volcanic effusive facies and volcanic sedimentary facies. The main types of porosity have air vent of primary pore, remnants pores of air vent filled after, cracks, micro-cracks and feldspar corrosion hole of secondary porosity, volcanic ash corrosion hole, micro-pore produced by rhyolitic glass from glass off in spherules rhyolite, quartz crystal chip corrosion hole, and so on. Through studying the ratio of reservoir and formation for a single well, the frequency distribution of reservoir thickness, production capacity situation and pool-forming regularity, Xudong area can be divided into three reservoir development zone, so we will find out the most favorable reservoir development zone, then it can play a guiding role for the next step of the exploration deployment.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jian Chen ◽  
Jie Xu ◽  
Susu Wang ◽  
Zhenyu Sun ◽  
Zhong Li ◽  
...  

Organic acids are important agents in the alteration of deep reservoirs. It is difficult, however, to assess the impact of organic acid alteration on deep reservoirs because different dissolution processes may occur during diagenesis. This study simulated the dissolution of three different types of reservoir rocks by acetic acid in a closed system and compared the mineral and elemental composition, surface morphology, pore structure, and water chemistry variations of the initial and altered samples. The study demonstrated that both micrite and sucrosic dolostone are strongly dissolved, losing about 20%–30% of their initial rock sample weights. Observation under SEM showed that the limestone dissolved homogenously, whereas the dolostone showed honeycomb-like dissolution. Both carbonate samples showed the development of large voids, including holes and cavities of micrometer scale, but nanopores of various sizes were blocked. In contrast, lithic arkose was heterogeneously altered, losing a weight proportion of about 13% by dissolution of calcite cement. These micrometer-scale microfissures were developed, but those nanometer-scale pores just varied in a narrow range of sizes. The volume increase in all three reservoir types is mainly attributed to the dissolution of carbonate minerals. In deep reservoirs, in situ generated organic acids can enlarge existing cavities in carbonates and develop microfissures in sandstones. The microfissure porosity in sandstone is limited but can increase through other geological processes such as overpressure. More importantly, these acids can maintain the acidity of pore waters, inhibit the precipitation of dissolved minerals, and help to preserve reservoir porosity. Although temperature plays an insignificant role in laboratory simulations, it influences both the generation and destruction processes of organic acids in deep reservoirs on geologic time scales and, thus, warrants further attention. The results provide a basis for recognizing the typical patterns of organic acid dissolution on different reservoir rocks and further suggest the potential role of organic acids in the formation and preservation of secondary porosity in deeply buried reservoirs.


2012 ◽  
Vol 246-247 ◽  
pp. 614-618
Author(s):  
Si Yuan Su ◽  
Chun Wei Zhang ◽  
Hai Feng Chen ◽  
Qing Tian Zou ◽  
Peng Fei Li

In logging field, saturation evaluation in tuffaceous sandstone reservoirs has been a difficult issue to be solved urgently. It is mainly due to the effect of complex pore structures in tuffaceous sandstone reservoirs. Compared with the normal sandstones, the tuffaceous sands have the properties of diversity origination, complex mineral components, easily transformed mineral, complex digenesis and porosity evolution .The comprehensive analyses of cores, thin slices, SEM, mercury-injection data and former research outcome of Beier oilfield on the porous structure and reservoir physical property of sandstones. The tuffaceous alteration is different under different burial phase and diagenetic environment and has different effects on the porosity of coarse grain have a constructive affection to the secondary porosity.


2020 ◽  
Vol 57 (3) ◽  
pp. 241-270
Author(s):  
Kyle L. Schusler ◽  
David M. Pearson ◽  
Michael McCurry ◽  
Roy C. Bartholomay ◽  
Mark H. Anders

The eastern Snake River Plain (ESRP) is a northeast-trending topographic basin interpreted to be the result of the time-transgressive track of the North American plate above the Yellowstone hotspot. The track is defined by the age progression of silicic volcanic rocks exposed along the margins of the ESRP. However, the bulk of these silicic rocks are buried under 1 to 3 kilometers of younger basalts. Here, silicic volcanic rocks recovered from boreholes that penetrate below the basalts, including INEL-1, WO-2 and new deep borehole USGS-142, are correlated with one another and to surface exposures to assess various models for ESRP subsidence. These correlations are established on U/Pb zircon and 40Ar/39Ar sanidine age determinations, phenocryst assemblages, major and trace element geochemistry, δ18O isotopic data from selected phenocrysts, and initial εHf values of zircon. These data suggest a correlation of: (1) the newly documented 8.1 ± 0.2 Ma rhyolite of Butte Quarry (sample 17KS03), exposed near Arco, Idaho to the upper-most Picabo volcanic field rhyolites found in borehole INEL-1; (2) the 6.73 ± 0.02 Ma East Arco Hills rhyolite (sample 16KS02) to the Blacktail Creek Tuff, which was also encountered at the bottom of borehole WO-2; and (3) the 6.42 ± 0.07 Ma rhyolite of borehole USGS-142 to the Walcott Tuff B encountered in deep borehole WO-2. These results show that rhyolites found along the western margin of the ESRP dip ~20º south-southeast toward the basin axis, and then gradually tilt less steeply in the subsurface as the axis is approached. This subsurface pattern of tilting is consistent with a previously proposed crustal flexural model of subsidence based only on surface exposures, but is inconsistent with subsidence models that require accommodation of ESRP subsidence on either a major normal fault or strike-slip fault.


2018 ◽  
Vol 15 (24) ◽  
pp. 7451-7484 ◽  
Author(s):  
Laura A. Casella ◽  
Sixin He ◽  
Erika Griesshaber ◽  
Lourdes Fernández-Díaz ◽  
Martina Greiner ◽  
...  

Abstract. The assessment of diagenetic overprint on microstructural and geochemical data gained from fossil archives is of fundamental importance for understanding palaeoenvironments. The correct reconstruction of past environmental dynamics is only possible when pristine skeletons are unequivocally distinguished from altered skeletal elements. Our previous studies show (i) that replacement of biogenic carbonate by inorganic calcite occurs via an interface-coupled dissolution–reprecipitation mechanism. (ii) A comprehensive understanding of alteration of the biogenic skeleton is only given when structural changes are assessed on both, the micrometre as well as on the nanometre scale.In the present contribution we investigate experimental hydrothermal alteration of six different modern biogenic carbonate materials to (i) assess their potential for withstanding diagenetic overprint and to (ii) find characteristics for the preservation of their microstructure in the fossil record. Experiments were performed at 175 °C with a 100 mM NaCl + 10 mM MgCl2 alteration solution and lasted for up to 35 days. For each type of microstructure we (i) examine the evolution of biogenic carbonate replacement by inorganic calcite, (ii) highlight different stages of inorganic carbonate formation, (iii) explore microstructural changes at different degrees of alteration, and (iv) perform a statistical evaluation of microstructural data to highlight changes in crystallite size between the pristine and the altered skeletons.We find that alteration from biogenic aragonite to inorganic calcite proceeds along pathways where the fluid enters the material. It is fastest in hard tissues with an existing primary porosity and a biopolymer fabric within the skeleton that consists of a network of fibrils. The slowest alteration kinetics occurs when biogenic nacreous aragonite is replaced by inorganic calcite, irrespective of the mode of assembly of nacre tablets. For all investigated biogenic carbonates we distinguish the following intermediate stages of alteration: (i) decomposition of biopolymers and the associated formation of secondary porosity, (ii) homoepitactic overgrowth with preservation of the original phase leading to amalgamation of neighbouring mineral units (i.e. recrystallization by grain growth eliminating grain boundaries), (iii) deletion of the original microstructure, however, at first, under retention of the original mineralogical phase, and (iv) replacement of both, the pristine microstructure and original phase with the newly formed abiogenic product.At the alteration front we find between newly formed calcite and reworked biogenic aragonite the formation of metastable Mg-rich carbonates with a calcite-type structure and compositions ranging from dolomitic to about 80 mol % magnesite. This high-Mg calcite seam shifts with the alteration front when the latter is displaced within the unaltered biogenic aragonite. For all investigated biocarbonate hard tissues we observe the destruction of the microstructure first, and, in a second step, the replacement of the original with the newly formed phase.


2018 ◽  
Vol 36 (5) ◽  
pp. 1136-1156 ◽  
Author(s):  
Yuanhua Qing ◽  
Zhengxiang Lü ◽  
Xiandong Wang ◽  
Xiuzhang Song ◽  
Shunli Zhang ◽  
...  

The oil and gas in the Palaeogene lacustrine carbonate rock reservoirs in the Bohai Sea accumulated during several periods. The reservoir porosity formed during each period affected the degree of accumulation that occurred. In this paper, the percentages of particles, authigenic minerals and pores in the reservoir bed were calculated with the statistical method of microstructure analysis. The formation time was determined with an isotopic analysis of the authigenic carbonate minerals and the homogenization temperature of the gas–liquid inclusions. The percentages of the primary intergranular pores that formed during the different stages were recovered based on the compaction features both before and after the formation of the major authigenic minerals. The evolution of porosity was thus described quantitatively and chronologically, employing the percentages of the residual primary intergranular pores, visceral cavity pores and dissolved pores at the different burial depths. The results indicate that in the initial sediments of the reservoir rock, the primary intergranular porosity was 32.4%. During the early burial stage, the total reservoir porosity increased by up to 46.9%, due to the addition of another type of primary pore, namely visceral cavity pores, which were generated from the decomposition of bioclasts. During the late, deep burial stage, the compaction reduced only 8.2% of the porosity, due to the support of the pore-lining dolomite precipitating during the early stage. Authigenic minerals occupied 12.6% of the porosity, and the dissolution created the secondary porosity by 3.8%. Good preservation of the visceral cavity pores and the growth of the pore-lining dolomites during the early stages are the major factors leading to the high reservoir porosity. The quantitative and chronological characteristics of the reservoir porosity evolution could be described accurately. The prediction of reservoir beds can be better guided than in previously reported methods by applying high resolution microscopic quantitative analysis technology and authigenic mineral timing analysis technology.


Author(s):  
Fadhil N. Sadooni ◽  
Hamad Al-Saad Al-Kuwari ◽  
Ahmad Sakhaee-Pour ◽  
Wael S. Matter

Introduction: The Jurassic Arab Formation is the main oil reservoir in Qatar. The Formation consists of a succession of limestone, dolomite, and anhydrite. Materials and methods: A multi-proxy approach has been used to study the Formation. This approach is based on core analysis, thin sections, and log data in selected wells in Qatar. Results: The reservoir has been divided into a set of distinctive petrophysical units. The Arab Formation consists of cyclic sediments of oolitic grainstone/packstone, foraminifera-bearing packstone-wackestone, lagoonal mudstone and dolomite, alternating with anhydrite. The sediments underwent a series of diagenetic processes such as leaching, micritization, cementation, dolomitization and fracturing. The impact of these diagenetic processes on the different depositional fabrics created a complex porosity system. So, in some cases there is preserved depositional porosity such as the intergranular porosity in the oolitic grainstone, but in other cases, diagenetic cementation blocked the same pores and eventually destroyed them. In other cases, diagenesis improved the texture of non-porous depositional texture such as mudstone through incipient dolomitization creating inter-crystalline porosity. Dissolution created vugs and void secondary porosity in otherwise non-porous foraminiferal wackestone and packstone. Therefore, creating a matrix of depositional fabrics versus diagenetic processes enabled the identification of different situations in which porosity was either created or destroyed. Future Directions: By correlating the collected petrographic data with logs, it will become possible to identify certain “facio-diagenetic” signatures on logs which will be very useful in both exploration and production. Studying the micro and nano-porosity will provide a better understanding of the evolution and destruction of its porosity system.


2021 ◽  
pp. 4810-4818
Author(s):  
Marwah H. Khudhair

     Shuaiba Formation is a carbonate succession deposited within Aptian Sequences. This research deals with the petrophysical and reservoir characterizations characteristics of the interval of interest in five wells of the Nasiriyah oil field. The petrophysical properties were determined by using different types of well logs, such as electric logs (LLS, LLD, MFSL), porosity logs (neutron, density, sonic), as well as gamma ray log. The studied sequence was mostly affected by dolomitization, which changed the lithology of the formation to dolostone and enhanced the secondary porosity that replaced the primary porosity. Depending on gamma ray log response and the shale volume, the formation is classified into three zones. These zones are A, B, and C, each can be split into three rock intervals in respect to the bulk porosity measurements. The resulted porosity intervals are: (I) High to medium effective porosity, (II) High to medium inactive porosity, and (III) Low or non-porosity intervals. In relevance to porosity, resistivity, and water saturation points of view, there are two main reservoir horizon intervals within Shuaiba Formation. Both horizons appear in the middle part of the formation, being located within the wells Ns-1, 2, and 3. These intervals are attributed to high to medium effective porosity, low shale content, and high values of the deep resistivity logs. The second horizon appears clearly in Ns-2 well only.


2020 ◽  
Vol 20 (4) ◽  
pp. 1567-1579
Author(s):  
M. Cetina ◽  
J-D. Taupin ◽  
S. Gómez ◽  
N. Patris

Abstract Metamorphic, igneous and sedimentary rocks, with low to no primary porosity, outcrop in the La Moza micro-basin stream (headwater of the Rio de Oro). In this high mountain system, water isotopic composition of rainwater, water isotopes and geochemistry of groundwater (springs) and surface water were determined. Groundwater flows are associated to phreatic aquifers in relationship with secondary porosity generated by fracturing, which is increased by dissolution processes in case of carbonate formation producing karstic systems and by the weathering phenomenon mainly affecting granodioritic rocks. Water geochemistry shows low to medium electrical conductivity (EC) depending on the geological formation, but a unique calcium bicarbonate facies. Spring water EC shows limited temporal variations. The isotopic composition of spring indicates a meteoric origin, local infiltration and groundwater flows with low residence time. A conceptual model of the recharge zone is proposed that crosses the surface watershed and covers part of the adjacent Rio Jordán basin, where the Berlin Paramo is located.


Sign in / Sign up

Export Citation Format

Share Document