Research of Window's Discharge Coefficient in the Natural Ventilation Room

2014 ◽  
Vol 525 ◽  
pp. 420-426
Author(s):  
Qi Hai Liao ◽  
Yan Ling Guan ◽  
Qiao Ning Wang

Discharge coefficient of window is one of the important factors in natural ventilated calculation, while there are many factors may impact the windows discharge coefficient. This article adopts the method of experiment, simulate the natural ventilation of room on the test bench , by measuring the pressure difference of both sides of window and the air flow through the window under different experimental conditions, analyze how the opening rate of window and the air flow impact the values of discharge coefficient of window, and giving the value of discharge coefficient of window under the experiment condition, hoping to provide help to the use of natural ventilation of building effectively.

Author(s):  
Magdalena Nakielska ◽  
Krzysztof Pawłowski

Nowadays, people are looking for solutions related to ventilation, cooling or heat demand systems, which would be energy efficient and, at the same time, would not cause the degradation of the surrounding environment. As far as ventilation is concerned, an good solution is a natural ventilation, which improves thermal comfort rooms without increasing the consumption of electrical energy in the building. In order to improve the mode of action of the natural ventilation in the building, one can mount various elements supporting the air flow. One of them is a solar chimney. In order to check the correct operation of a gravity ventilation installation in Poland’s climatic conditions, the measurements was carried out on a test stand on the 3.1 building of UTP University of Science and Technology in Bydgoszcz. The received results show the intensification of the air flow through the room the value between 50% and 150%, depending on a measuring hour (Chen et al. 2003). These research results were compared with the research results received before the installation of the solar chimney on the ducts of the gravity ventilation.


2020 ◽  
Vol 26 (1) ◽  
pp. 74-86
Author(s):  
Elahe Mirabi ◽  
Nazanin Nasrollahi ◽  
Mehdi Dadkhah

Natural ventilation is application of natural drift power of wind. Wind can enter and exit buildings through the openings on facades. Hence, Form of facades can impact the air flow behaviour and consequently natural ventilation because they can change the pressure distribution on facades. Moreover, wind pressure difference between windward and leeward facades of buildings is the most important factor affecting natural ventilation. So, it is worthy to focus on facade details in order to enhance natural ventilation. Particularly, geometrical details of facades such as protrusions and indentations e.g. balconies can be considered effective elements on average pressure distribution on both windward and leeward facades, changing pressure difference between these facades. This difference can drive the air flow towards interior spaces significantly. Although this basic rule has been used by different researchers in order to increase natural ventilation buildings, the most research has been studied buildings with flat facades. Therefore, this study aims to investigate effects of balcony types on the natural ventilation. Three types of balcony are simulated and the wind pressure distribution on the windward and leeward facades are analysed. All these simulations are carried out for normally (perpendicular) and obliquely incident wind. This study is performed with Ansys Fluent 18 for all simulations. The results showed that balcony types can affect the pressure distribution on the windward and leeward facades of buildings, leading to the more or less pressure difference between these two facades. These results show that protrusion (protrusive balcony) can cause more complicated pattern of the wind pressure on facades than the others. Also, Re-entrant balcony causes the more pressure differences between the windward and leeward facades and enhances natural ventilation of buildings more considerably than the protrusive one.


2018 ◽  
Vol 49 ◽  
pp. 00036
Author(s):  
Sławomir Grabarczyk

In greenhouses, in order to maintain proper indoor air temperature, during the period of high values of solar radiation intensity, shading treatments using thermal screens and ventilation are applied. The research was carried out in a mono-span greenhouse in order to determine the effectiveness of natural ventilation. The object of analysis is a greenhouse with a thermal screen installed inside. The tests were carried out during the summer days. The effect of the research was to determine the ventilation air flow through the vents of the greenhouse on the basis of measurements and calculation analyzes. The dependence of the air flow on the windward and leeward side was determined from the wind speed and the temperature difference between the indoor and outdoor air. On the basis of calculations made from observation during shading of the cultivated area and with open ventilators, the coefficients of air exchange per unit floor area of the greenhouse were determined. It was established that at a wind speed exceeding 0.8 m/s, the air exchange rate in the tested greenhouse exceeds the value recommended by the American Society of Agricultural Engineers of 0.04 m3/(s.m2).


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Christian Binder ◽  
Mats Kinell ◽  
Esa Utriainen ◽  
Daniel Eriksson ◽  
Mehdi Bahador ◽  
...  

The cooling air flow in a gas turbine is governed by the flow through its internal passages and controlled by restrictors such as circular orifices. If the cooling air flow is incorrectly controlled, the durability and mechanical integrity of the whole turbine may be affected. Consequently, a good understanding of the orifices in the internal passages is important. This study presents experimental results for a range of pressure ratios and length-to-diameter ratios common in gas turbines including even very small pressure ratios. Additionally, the chamfer depth at the inlet was also varied. The results of the chamfer depth variation confirmed its beneficial influence on decreasing pressure losses. Moreover, important effects were noted when varying more than one parameter at a time. Besides earlier mentioned hysteresis at the threshold of choking, new phenomena were observed, e.g., a rise of the discharge coefficient for certain pressure and length-to-diameter ratios. A correlation for the discharge coefficient was attained based on the new experimental data with a generally lower error than previous studies.


2010 ◽  
Vol 140 (1) ◽  
pp. 32-39
Author(s):  
Dariusz SZPICA

The paper presents selected simulation test results of the air flow through various types of throttle bodies. The experimental tests were mapped in virtual conditions, using the experimental conditions as initial and edge conditions. The geometry was implemented from the Solid Works software into the COSMOS-FloWorks, in which the simulations were carried out. The results represented supplementation to test stand investigations. The comparison of classic, two stage and profiled intake throttles provided answers to the ques-tions related to the necessity to differentiate the structure in order to achieve specific flow characteristics.


1988 ◽  
Vol 136 (1) ◽  
pp. 1-12 ◽  
Author(s):  
D. O. Kuethe

The unidirectional flow through the gas-exchanging bronchi of bird lungs is known to be effected by (1) the structure of the major bronchi and (2) a pressure difference between the cranial and caudal air sacs. To study the effects of bronchial structure, simple physical models of bird lungs were constructed. They suggested that, to achieve unidirectional flow, air in the caudal portion of the primary bronchus must be directed towards the orifices of the mediodorsal bronchi. To study the effect of air sac pressures, a controllable pressure difference was produced between the air sac orifices of fixed duck lungs. The cranial orifices had a higher pressure than the caudal ones during inhalation and vice versa during exhalation. There was a set of pressure differences for which the paleopulmo received the same flow rate during inhalation as during exhalation. High pressure differences caused more flow in the paleopulmo during exhalation than during inhalation; low pressure differences had the converse effect.


2020 ◽  
Author(s):  
Angel Reyes-Cubas ◽  
Peter Abdo

Abstract Climate change and global warming have raised many concerns, highlighting the necessity to reduce energy consumption associated with the building sector. HVAC systems account to almost 40% of the building’s energy consumption. Natural ventilation is the process of supplying and removing air through an indoor space by natural means. Windcatchers have been used over centuries for providing natural ventilation using wind power. Moreover, it is an effective passive method to provide healthy and comfortable indoor environment by decreasing moisture content in the air and reducing pollutants concentration significantly. Materials that change phase at certain temperature are frequently referred to as Phase Change Materials (PCMs). Phase Change Materials, also known as Thermal Energy Storage (TES), are substances with high latent heat storage capacity which absorb or release the heat from or to the surrounding environment. PCMs could be used in passive cooling systems and they are directly related to building energy efficiency. This study investigates air flow through a windcatcher into a two-dimensional room incorporated with phase change materials (PCMs). The temperature change in the room implementing PCM is analyzed to monitor the PCMs’ performance. To achieve this, Computational Fluid Dynamics (CFD) tool is used to simulate the air flow through a two-dimensional standard room (3 m × 5 m) fitted with a windcatcher at its roof. Ansys Fluent is utilized to simulate and display the contours of temperature, liquid fraction, and velocity of both PCM and air. The energy model as well as the solidification and melting model are employed, and the K-Epsilon turbulence model is implemented. PCM is placed at the right and left walls of the room, as well as at its bottom. The inlet velocity ranges between 1 m/s and 7 m/s, simulating the average wind speeds in Sydney-Australia during summer [1]. Different inlet temperatures are used, specifically at 302 K and 310 K. The effect of the phase change material presence on the air flow pattern is also investigated.


2018 ◽  
Author(s):  
Kashif Nazir ◽  
B. P. Huynh

Solar chimney (thermal chimney) is a device which absorbs solar radiation to heat the air. The heated air, becoming buoyant, rises through the chimney’s passage and induces further air currents. When fitted to a building, solar chimney can thus induce fresh outside air to flow through the building for ventilation. Because only natural means (solar radiation here) are involved to cause the air flow, solar chimney is considered a natural-ventilation device. This work investigates computationally natural ventilation induced by a roof-mounted solar chimney through a real-sized 3-dimensional room, using a commercial CFD (Computational Fluid Dynamics) software package which employs the Finite Volume Method. Chien’s turbulence model of low-Reynolds-number K-ε is used in a Reynolds-Averaged Navier-Stokes (RANS) formulation. Computational domain that includes regions outside the room’s inlet opening and chimney’s exit allows for employing realistic boundary conditions for the computational model. Ventilation rate and air-flow pattern through the room are considered in terms of the location of the room’s inlet opening. It is found that while ventilation flow-rate through the room is higher with the room-inlet opening being located high on the wall opposite to the chimney’s entrance, a room-inlet opening being located near the ground results in better flow pattern with more flow through the living area in the lower part of the room.


Author(s):  
Rahil Taghipour ◽  
Peter Abdo ◽  
B. P. Huynh

Natural ventilation is the process of supplying and removing air through an indoor space by natural means. Windcatcher has been used over centuries for providing natural ventilation using wind power, it is an effective passive method to provide healthy and comfortable indoor environment by decreasing moisture content in the air and reducing pollutants concentration. The windcatcher’s function is based on the wind and on the stack effect resulting from temperature differences. Generally, it is difficult for wind to change its direction, and enter a room through usual openings, the windcatcher is designed to overcome such problems since they have vertical columns aimed at helping wind to channel down to the inside of a building. The efficiency of a windcatcher is maximized by applying special forms of opening and exit. The openings depend on the windcatcher’s location and on its cross sectional area and shape such as square, rectangular, hexagonal or circular. In this study the effect of different wind speeds on the total air flow captured by different inlet designs is investigated. To achieve this, CFD (computational fluid dynamics) tool is used to simulate the air flow in a two dimensional room fitted with a windcatcher applying wind speeds from 1 m/s up to 14 m/s and based on different inlet designs such as a uniform inlet, a divergent inlet and a bulging-convergent inlet.


1975 ◽  
Vol 17 (6) ◽  
pp. 338-347 ◽  
Author(s):  
B. J. Bailey

Values of the discharge coefficient for air flow through single holes in a pipe wall, and for the angle of efflux are reported. The variation of static pressure along tubular polyethylene air ducts with a maximum length-to-diameter ratio of 250 containing pairs of diametrically opposed holes has been measured. This information was used with data on friction loss to determine values for the coefficient of static pressure regain. It was possible to predict variations in static pressure and air discharge along uniformly perforated ducts which were in good agreement with those observed experimentally.


Sign in / Sign up

Export Citation Format

Share Document