Studies on Mechanical Properties and Microstructure of Al2O3 Reinforced AA5083 Matrix Composite 

2014 ◽  
Vol 592-594 ◽  
pp. 749-754 ◽  
Author(s):  
R. Senthilkumar ◽  
N. Arunkumar ◽  
M. Manzoor Hussian ◽  
R. Vijayaraj

The expectations over novel composite materials have been increased especially in automotive and aerospace applications due to its superior weight to strength ratio and tailored mechanical properties. In this frame work, aluminum alloy AA5083 alloy matrix reinforced with micron (10% wt – 5% wt) and nanoparticles (1% wt – 5% wt) of Al2O3.The composite samples were fabricated through powder metallurgy route. Optimum amount of reinforcement were determined by evaluating mechanical properties like micro-hardness and compressive strength of composites. The characterizations were probed by Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) methods. The results reveal that the composites containing 2% wt of nanoAl2O3and 8 % micro Al2O3reinforcement witnessed superior mechanical properties due to its combined effect of concentration and particulate scale and the great isotropic behavior was achieved by homogenous dispersion of reinforcement in the matrix phase.

2013 ◽  
Vol 849 ◽  
pp. 62-68 ◽  
Author(s):  
R. Senthilkumar ◽  
N. Arunkumar ◽  
M. Manzoor Hussian ◽  
R. Vijayaraj

In this research, aluminum alloy AA2014 matrix composites reinforced with micron (10% wt 5% wt) and nanoparticles (1% wt 5% wt) of Al2O3were fabricated through powder metallurgy method. Optimum amount of reinforcement were determined by evaluating mechanical properties like micro-hardness and compressive strength of composites. The composite samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results reveal that the composites containing 2% wt of nanoAl2O3and 8 % micro Al2O3reinforcement has homogenous microstructure as well as superior mechanical properties.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750014 ◽  
Author(s):  
Xingguo Li ◽  
Bingbing An ◽  
Dongsheng Zhang

Interfacial behavior in the microstructure and the plastic deformation in the protein matrix influence the overall mechanical properties of biological hard tissues. A cohesive finite element model has been developed to investigate the inelastic mechanical properties of bone-like biocomposites consisting of hard mineral crystals embedded in soft biopolymer matrix. In this study, the complex interaction between plastic dissipation in the matrix and bonding properties of the interface between minerals and matrix is revealed, and the effect of such interaction on the toughening of bone-like biocomposites is identified. For the case of strong and intermediate interfaces, the toughness of biocomposites is controlled by the post yield behavior of biopolymer; the matrix with low strain hardening can undergo significant plastic deformation, thereby promoting enhanced fracture toughness of biocomposites. For the case of weak interfaces, the toughness of biocomposites is governed by the bonding property of the interface, and the post-yield behavior of biopolymer shows negligible effect on the toughness. The findings of this study help to direct the path for designing bioinspired materials with superior mechanical properties.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1056 ◽  
Author(s):  
Ibon Aranberri ◽  
Sarah Montes ◽  
Itxaso Azcune ◽  
Alaitz Rekondo ◽  
Hans-Jürgen Grande

Feathers are made of keratin, a fibrous protein with high content of disulfide-crosslinks and hydrogen-bonds. Feathers have been mainly used as reinforcing fiber in the preparation of biocomposites with a wide variety of polymers, also poly(urea-urethane)s. Surface compatibility between the keratin fiber and the matrix is crucial for having homogenous, high quality composites with superior mechanical properties. Poly(urea-urethane) type polymers are convenient for this purpose due to the presence of polar functionalities capable of forming hydrogen-bonds with keratin. Here, we demonstrate that the interfacial compatibility can be further enhanced by incorporating sulfur moieties in the polymer backbone that lead to new fiber-matrix interactions. We comparatively studied two analogous thermoplastic poly(urea-urethane) elastomers prepared starting from the same isocyanate-functionalized polyurethane prepolymer and two aromatic diamine chain extenders, bis(4-aminophenyl) disulfide (TPUU-SS) and the sulfur-free counterpart bis(4-aminophenyl) methane (TPUU). Then, biocomposites with high feather loadings (40, 50, 60 and 75 wt %) were prepared in a torque rheometer and hot-compressed into flexible sheets. Mechanical characterization showed that TPUU-SS based materials underwent higher improvement in mechanical properties than biocomposites made of the reference TPUU (up to 7.5-fold higher tensile strength compared to neat polymer versus 2.3-fold). Field Emission Scanning Electron Microscope (FESEM) images also provided evidence that fibers were completely embedded in the TPUU-SS matrix. Additionally, density, thermal stability, and water absorption of the biocomposites were thoroughly characterized.


Author(s):  
M.O. Kaptakov

In this work, the mechanical properties of composite samples prepared using a conventional and nanomodified matrix were studied. The thickness of the monolayers in the samples was 0,2 μm. It was found in experiments, that the addition of fullerene soot as a nanomodifierled to an increase in the mechanical properties of the samples along the direction of reinforcement. At the same time, an improvement in the quality of the contact of the matrix with the fibers in the samples with the nanomodifier was observed: on the fracture surface, the nanomodified matrix envelops the fibers, while the usual matrix completely exfoliates. The obtained effects of changing the strength of composites can be associated, among other things, with a change in the level of residual stresses arising in composites during nanomodification. Analytical and numerical modeling methods are used to explain these effects.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5856
Author(s):  
Pragya Mishra ◽  
Pia Åkerfeldt ◽  
Farnoosh Forouzan ◽  
Fredrik Svahn ◽  
Yuan Zhong ◽  
...  

Laser powder bed fusion (L-PBF) has attracted great interest in the aerospace and medical sectors because it can produce complex and lightweight parts with high accuracy. Austenitic stainless steel alloy 316 L is widely used in many applications due to its good mechanical properties and high corrosion resistance over a wide temperature range. In this study, L-PBF-processed 316 L was investigated for its suitability in aerospace applications at cryogenic service temperatures and the behavior at cryogenic temperature was compared with room temperature to understand the properties and microstructural changes within this temperature range. Tensile tests were performed at room temperature and at −196 °C to study the mechanical performance and phase changes. The microstructure and fracture surfaces were characterized using scanning electron microscopy, and the phases were analyzed by X-ray diffraction. The results showed a significant increase in the strength of 316 L at −196 °C, while its ductility remained at an acceptable level. The results indicated the formation of ε and α martensite during cryogenic testing, which explained the increase in strength. Nanoindentation revealed different hardness values, indicating the different mechanical properties of austenite (γ), strained austenite, body-centered cubic martensite (α), and hexagonal close-packed martensite (ε) formed during the tensile tests due to mechanical deformation.


2013 ◽  
Vol 212 ◽  
pp. 59-62 ◽  
Author(s):  
Jerzy Myalski ◽  
Jakub Wieczorek ◽  
Adam Płachta

The change of matrix and usage of the aluminum alloys designed for the metal forming in making the composite suspension allows to extend the processing possibility of this type of materials. The possibility of the metal forming of the composites obtained by mechanical mixing will extend the range of composite materials usage. Applying of the metal forming e.g. matrix forging, embossing, pressing or rolling, will allow to remove the incoherence of the structure created while casting and removing casting failures. In order to avoid the appearance of the casting failures the homogenization conditions need to be changed. Inserting the particles into the matrix influences on the shortening of the composite solidification. The type of the applied particles influenced the sedimentation process and reinforcement agglomeration in the structure of the composite. Opposite to the composites reinforced with one-phase particles applying the fasess mixture (glassy carbon and silicon carbide) triggered significant limitation in the segregation process while casting solidification. Inserting the particles into the AW-AlCu2SiMn matrix lowers the mechanical properties tension and impact value strength. The most beneficial mechanical properties were gained in case of heterofasess composites reinforced with the particle mixture of SiC and glass carbon. The chemical composition of the matrix material (AW-AlCu2SiMn) allows to increase additionally mechanical characteristics by the precipitation hardening reached through heat casting forming.


2003 ◽  
Vol 12 (4) ◽  
pp. 096369350301200
Author(s):  
Janakarajan Ramkumar ◽  
Atsushi Kakitsuji ◽  
S.K. Malhotra ◽  
R. Krishnamurthy ◽  
H. Mabuchi ◽  
...  

Ti-50Al alloy and Ti-47Al-3W alloy and its composites have been prepared by reactive arc melting technique using elemental powders. Composites have been reinforced using 3.5, 10 and 18 vol% of Ti2AlC in the matrix of TiAl with and without addition of W and C. By the addition of tungsten and carbon to TiAl alloy, we have produced composites that are reinforced randomly by reacted rod like Ti2AlC particles with fine precipitate of Ti2AlC particles and B2 particles. Compared to Ti-50Al alloys, the Ti-47Al-3W alloy and its composites have superior mechanical properties like bending strength, hardness, fracture toughness and erosion. Ti-47Al-3W/3.5 vol% Ti2AlC has excellent erosion resistance because of the dispersion of fine Ti2AlC and B2 particles in the matrix.


2019 ◽  
Vol 54 (7) ◽  
pp. 981-997
Author(s):  
Semegn Cheneke ◽  
D Benny Karunakar

In this research, microstructure and mechanical properties of stir rheocast AA2024/TiB2 metal matrix composite have been investigated. The working temperature was 640℃, which was the selected semisolid temperature that corresponds to 40% of the solid fraction. Two weight percentage, 4 wt%, and 6 wt% of the TiB2 reinforcements were added to the matrix. The field emission scanning electron microscope micrographs of the developed composites showed a uniform distribution of the particles in the case of the 2 wt% and 4 wt% of the reinforcements. However, the particles agglomerated as the weight percentages of the reinforcement increases to 6%. The optical microscope of the liquid cast sample showed the dendritic structure, whereas the rheocast samples showed a globular structure. The X-ray diffraction analysis confirmed the distribution of the reinforcements in the matrix and the formation of some intermetallic compounds. Mechanical properties significantly improved by the addition of the reinforcements in the matrix. An increase in tensile strength of 13.3%, 40%, 28%, and 5% was achieved for the unreinforced rheocast sample, 2 wt%, 4 wt%, and 6 wt% reinforced rheocast samples respectively, compared to the liquid cast sample. An increase in 20% of hardness was attained for the composite with 2 wt% TiB2 compared to the liquid cast sample. According to the fractography analysis, small dimples were observed on the fractured surface of the unreinforced rheocast sample, whereas small and large voids were dominant on the fractured surface of the 2 wt% composite, which shows the ductile fracture mode.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1377-1382 ◽  
Author(s):  
SEULKI PARK ◽  
JINMYUNG CHOI ◽  
BONGGYU PARK ◽  
IKMIN PARK ◽  
YONGHO PARK ◽  
...  

Hypereutectic Al - Si alloys with fine and evenly distributed Si precipitates have superior mechanical properties In this study, hypereutectic Al - Si alloy powders which contained 15 and 20wt% Si were prepared by a gas atomization process. 1, 3 and 5wt% AlN particles were blended with the Al - Si alloy powders using turbular mixer. The mixture was consolidated by Hot Press at 550°C for 1h under 60MPa. Relative density of the sintered samples was about 98% of theoretical density. This study was investigated by two ways. One is the effect of reinforcement weight fraction and the other is the effect of Silicon contents on the mechanical properties of the composite. Microstructural characterization and phase evaluation were carried out using X-ray Diffraction, Scanning Electron Microscopy equipped with Energy Dispersive Spectrometer. The results showed that the smaller the reinforcement particle size was and the better its distribution was, the higher ultimate tensile strength and hardness were.


2008 ◽  
Vol 8 (4) ◽  
pp. 1858-1866 ◽  
Author(s):  
Pralay Maiti ◽  
Jaya P. Prakash Yadav

Copolymer of hydroxybutyrate and hydroxyvalerate, P(HB-HV)/layered silicate or hydroxyapatite nanocomposites were prepared via melt extrusion. The nanostructure, as observed from wide-angle X-ray diffraction and transmission electron microscopy, indicate intercalated hybrids for layered silicates. Hydroxyapatite of nanometer dimension is uniformly distributed in matrix copolymer. The nanohybrids show significant improvement in thermal and mechanical properties of the copolymer as compared to the neat copolymer. The layered silicate nanocomposites exhibit superior mechanical properties as compared to hydroxyapatite nanohybrid. The thermal expansion coefficient is significantly reduced in nanohybrids. The biodegradability of pure copolymer and its nanocomposites were studied at room temperatures under controlled conditions in compost media. The rate of biodegradation of copolymer is enhanced dramatically in the nanohybrids. Hydroxyapatite hybrid shows highest rate of biodegradation. The change in biodegradation is streamlined in terms of nature of nanoparticles used to prepare hybrids.


Sign in / Sign up

Export Citation Format

Share Document