scholarly journals Microstructural Characterization and Mechanical Properties of L-PBF Processed 316 L at Cryogenic Temperature

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5856
Author(s):  
Pragya Mishra ◽  
Pia Åkerfeldt ◽  
Farnoosh Forouzan ◽  
Fredrik Svahn ◽  
Yuan Zhong ◽  
...  

Laser powder bed fusion (L-PBF) has attracted great interest in the aerospace and medical sectors because it can produce complex and lightweight parts with high accuracy. Austenitic stainless steel alloy 316 L is widely used in many applications due to its good mechanical properties and high corrosion resistance over a wide temperature range. In this study, L-PBF-processed 316 L was investigated for its suitability in aerospace applications at cryogenic service temperatures and the behavior at cryogenic temperature was compared with room temperature to understand the properties and microstructural changes within this temperature range. Tensile tests were performed at room temperature and at −196 °C to study the mechanical performance and phase changes. The microstructure and fracture surfaces were characterized using scanning electron microscopy, and the phases were analyzed by X-ray diffraction. The results showed a significant increase in the strength of 316 L at −196 °C, while its ductility remained at an acceptable level. The results indicated the formation of ε and α martensite during cryogenic testing, which explained the increase in strength. Nanoindentation revealed different hardness values, indicating the different mechanical properties of austenite (γ), strained austenite, body-centered cubic martensite (α), and hexagonal close-packed martensite (ε) formed during the tensile tests due to mechanical deformation.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1563
Author(s):  
Sofia Marquez-Bravo ◽  
Ingo Doench ◽  
Pamela Molina ◽  
Flor Estefany Bentley ◽  
Arnaud Kamdem Tamo ◽  
...  

Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic–basic–neutralization–stretching–drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young’s modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m−3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.


2010 ◽  
Vol 654-656 ◽  
pp. 2126-2129 ◽  
Author(s):  
Yuichi Nakahira ◽  
Tomonari Inamura ◽  
Hiroyasu Kanetaka ◽  
Shuichi Miyazaki ◽  
Hideki Hosoda

Effect of nitrogen (N) addition on mechanical properties of Ti-Cr-Sn alloy was investigated in this study. Ti-7mol%Cr-3mol%Sn was selected and less than 0.5wt% of N were systematically added. The alloys were characterized by optical microscopy, X-ray diffraction analysis and tensile tests at room temperature. The apparent phase was β (bcc) phase, whereas the presence of precipitates was confirmed in 0.5wt%N-added alloy only which did not exhibit sufficient cold workability. The grain size was not largely affected by N addition being less than 0.5wt%. Tensile tests revealed that less than 0.5wt%N addition improves the strength which is due to the solution hardening by interstitial N atoms.


2007 ◽  
Vol 546-549 ◽  
pp. 257-260 ◽  
Author(s):  
Zhen Yan Zhang ◽  
Li Ming Peng ◽  
Xiao Qin Zeng ◽  
Lin Du ◽  
Lan Ma ◽  
...  

Effects of extrusion on mechanical properties and damping capacity of Mg-1.8wt.%Cu -0.5wt.%Mn (MCM1805) alloy have been investigated. Tensile tests and dynamic mechanical analyzer were respectively used to measure tensile properties and damping capacity at room temperature of as-cast and as-extruded MCM1805 alloy. The microstructure was studied using optical microscope, X-ray diffraction and scanning electron microscope with an energy dispersive X-ray spectrometer. Granato-Lücke model was used to explain the influences of extrusion on damping capacity of MCM1805 alloy. The results showed that extrusion dramatically decreases the grain size but has little influence on phase composition and solute atoms concentration of MCM1805 alloy, and the grain refinement was the dominant reason for the obvious increase of tensile properties and decrease of internal friction of MCM1805 alloy.


2008 ◽  
Vol 584-586 ◽  
pp. 734-740 ◽  
Author(s):  
Sushanta Kumar Panigrahi ◽  
R. Jayaganthan

The mechanical properties and microstructural characteristics of a precipitation hardenable Al 7075 alloy subjected to rolling at liquid nitrogen temperature and room temperature are reported in this present work. The Al 7075 alloy was severely rolled at cryogenic temperature and room temperature and its mechanical properties were studied by using tensile tests and hardness. The microstructural characterization of Al 7075 alloy were made using SEM/EBSD, TEM and DSC. The cryorolled Al 7075 alloys have shown improved mechanical properties as compared to the room temperature rolled Al alloy. The cryorolled Al alloy after 90% thickness reduction exhibits ultrafine grain structure as observed from its TEM micrographs. It is observed that the strength and hardness of the cryorolled materials (CR) at different percentage of thickness reductions are higher as compared to the room temperature rolled (RTR) materials at the same strain due to suppression of dynamic recovery and accumulation of higher dislocations density in the CR materials.


2005 ◽  
Vol 494 ◽  
pp. 211-216 ◽  
Author(s):  
B. Dimčić ◽  
M. Vilotijević ◽  
D. Božić ◽  
D. Rajnović ◽  
M.T. Jovanović

The structural and compression mechanical properties of Ti3Al-based intermetallics produced by powder metallurgy techniques have been studied. The as-milled powders were compacted by hot pressing to non-porous homogenous compacts. Prior to compression tests, all compacts were homogenized by a solution treatment at 1050°C (a+β region) for 1h, followed by water quenching. The compression tests were performed from room temperature to 500°C in vacuum at a strain rate of 1 3 10 4 . 2 − − × s . Detailed microstructural characterization was evaluated by scanning electron microscopy (SEM), followed by energy dispersive spectroscopy (EDS) and X-ray diffraction analysis.


Nanomaterials ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 100
Author(s):  
Yuxi Gao ◽  
Jinwen Zou ◽  
Xuqing Wang ◽  
Xiaofeng Wang ◽  
Jie Yang ◽  
...  

Graphene nanosheet (GNS)-reinforced nickel-based superalloy FGH95 (GNSs/FGH95) matrix composites are prepared via the powder metallurgy approach. Scanning electron microscopy, transmission electron microscope and static tensile tests are used to investigate the microstructure and mechanical properties of GNS-reinforced nickel-based superalloy FGH95. Mechanical properties and failure behavior at room temperature and high temperature are studied. Static tensile tests at room temperature and high temperature confirm that the strength and plasticity of GNS-reinforced FGH95 have been improved, compared to the unreinforced superalloy. The results show that with the increase of temperature, the failure behavior of GNSs/FGH95 composite changes from the interface debonding of the GNSs/matrix to the failure of the FGH95 matrix. This work suggests that GNSs/FGH95 composite has great potential to be a structural material in aero-engine fields.


2015 ◽  
Vol 816 ◽  
pp. 399-403
Author(s):  
Qing Shan Yang ◽  
Bin Jiang ◽  
Wei Jiang ◽  
Bo Song ◽  
Su Qing Luo ◽  
...  

AZ31 magnesium alloy and its alloy with 5% lithium were extruded to 1mm in thickness sheets at 380 oC with extrusion ratio of 101. Microstructure evolution and mechanical behavior of the extruded Mg alloy sheets were examined. The microstructure and texture evolution were investigate by electronic backscattered diffraction (EBSD) and X-ray diffraction (XRD). Mechanical performance was carried out by tensile tests at room temperature. In addition, the evolution of neutral layer and microstructure was also examined by V-bending. It was found that Li addition resulted in the strong divergence of the grain orientation. (0002) basal texture of AZ31 alloy sheets with 5% lithium has been weakened. The room temperature ductility of these textural sheets was enhanced owing to the tilted weak basal texture. Moreover, it exhibits superior ductility during V-bending process at room temperature.


Author(s):  
Pavel A. Somov ◽  
Eugene S. Statnik ◽  
Yuliya Malakhova ◽  
Kirill V. Nyaza ◽  
Alexey I. Salimon ◽  
...  

Recent years witnessed progressive broadening of the practical use of 3D-printed aluminium alloy parts, in particular for specific aerospace applications where weight saving is of great importance. Selective laser melting (SLM) is an intrinsically multi-parametric fabrication technology that offers multiple means of controlling mechanical properties (elastic moduli, yield strength, ductility) through the control over grains size, shape, and orientation. Ultimately, this approach implies that structural elements can be purposefully fabricated to reinforce specific zones and directions where higher mechanical loads are anticipated by design. Targeted control over mechanical properties is achieved through the tuning of 3D-printing parameters and may even obviate the need of heat treatment or mechanical post-processing. Systematic studies of grain structure for different printing orientation with the help of EBSD techniques in combination with mechanical testing at different dimensional levels are the necessary first steps to implement this agenda. Samples of 3D-printable Al-Mg-Si RS-333 alloy were fabricated in 3 orientations with respect to the principal build direction and the fast laser beam scanning direction. Sample structure and proper-ties were investigated using a number of techniques, including EBSD, in situ SEM tensile testing, roughness measurements and nanoindentation. The as-printed samples we found to display strong variation in Young’s modulus values from nanoindentation (from 43 to 66 GPa) and tensile tests (from 54 to 75 GPa), yield stress and ultimate tensile strength (100…195 and 130…220 MPa) in different printing orientations, and almost constant hardness of about 0.8 GPa. A further preliminary study was conducted of the effect of surface finishing on the mechanical performance. Surface polishing appears to reduce Young’s modulus and yield strength, but improves ductility, whereas the influence of sand blasting is more controversial. The experimental results are dis-cussed in connection with the grain morphology and orientation.


2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2018 ◽  
Vol 284 ◽  
pp. 615-620 ◽  
Author(s):  
R.M. Baitimerov ◽  
P.A. Lykov ◽  
L.V. Radionova

TiAl6V4 titanium base alloy is widely used in aerospace and medical industries. Specimens for tensile tests from TiAl6V4 with porosity less than 0.5% was fabricated by selective laser melting (SLM). Specimens were treated using two heat treatment procedures, third batch of specimens was tested in as-fabricated statement after machining. Tensile tests were carried out at room temperature. Microstructure and mechanical properties of SLM fabricated TiAl6V4 after different heat treatments were investigated.


Sign in / Sign up

Export Citation Format

Share Document