Posture Correction Technique Based on Visual Analysis

2014 ◽  
Vol 644-650 ◽  
pp. 2632-2635
Author(s):  
An Di

In basketball training, if the posture of basketball player is deviated, great impact will be brought to basketball training. Therefore, this paper presents a posture correction technology based on vision analysis. A lot of computer vision image are collected in basketball training, this images are enhanced to improve definition of image, with the high-quality images to identify wrong posture, and compare with standard posture to achieve posture correction in basketball training. Experimental results show that the proposed algorithm for posture correction in basketball training can improve the accuracy of correction, so as to meet the actual needs of basketball training.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chen Chen ◽  
Fahd S Alotaibi ◽  
Saeed Aldulaimi

Abstract Computer vision technology and video image processing technology in the visual rehearsal of sports dance is a hot research topic. Based on this research background, the thesis uses 3D mathematical modelling technology to interpolate and extract the captured sports and dance movement information to make the final synthesised human animation natural, smooth and lifelike. At the same time, the thesis realises the method of action cohesion through the definition of characteristic action unit attributes and association constraints. Then, it applies it to the visual rehearsal system of sports dance. Finally, the analysis of experimental results proves that the proposed method can improve the precision and recall of rehearsal.


2020 ◽  
Vol 2020 (4) ◽  
pp. 116-1-116-7
Author(s):  
Raphael Antonius Frick ◽  
Sascha Zmudzinski ◽  
Martin Steinebach

In recent years, the number of forged videos circulating on the Internet has immensely increased. Software and services to create such forgeries have become more and more accessible to the public. In this regard, the risk of malicious use of forged videos has risen. This work proposes an approach based on the Ghost effect knwon from image forensics for detecting forgeries in videos that can replace faces in video sequences or change the mimic of a face. The experimental results show that the proposed approach is able to identify forgery in high-quality encoded video content.


2021 ◽  
pp. 1329878X2110081
Author(s):  
TJ Thomson

This study uses news photographs and interviews with journalists to explore how Australia’s unprecedented 2019–2020 bushfire season was depicted for Australian and non-Australian audiences in order to extend transnational understanding of iconicity’s tenets and how news values vary across contexts. It does so first by examining the Sydney Morning Herald’s coverage over 3 months and then by contrasting this with international coverage that began in early 2020 once the issue spilled onto the world stage. Australia’s coverage focused intensely on human actors involved in the disaster while the vast numbers of affected animals were virtually absent. In contrast, international media visually depicted the disaster as an environmental and ecological issue with global consequences. The results suggest a need for a definition of iconicity that is inclusive to non-human actors and to inanimate forces that are personified. It also extends our cross-cultural understanding of the visual expression of news values.


2021 ◽  
Vol 13 (8) ◽  
pp. 1537
Author(s):  
Antonio Adán ◽  
Víctor Pérez ◽  
José-Luis Vivancos ◽  
Carolina Aparicio-Fernández ◽  
Samuel A. Prieto

The energy monitoring of heritage buildings has, to date, been governed by methodologies and standards that have been defined in terms of sensors that record scalar magnitudes and that are placed in specific positions in the scene, thus recording only some of the values sampled in that space. In this paper, however, we present an alternative to the aforementioned technologies in the form of new sensors based on 3D computer vision that are able to record dense thermal information in a three-dimensional space. These thermal computer vision-based technologies (3D-TCV) entail a revision and updating of the current building energy monitoring methodologies. This paper provides a detailed definition of the most significant aspects of this new extended methodology and presents a case study showing the potential of 3D-TCV techniques and how they may complement current techniques. The results obtained lead us to believe that 3D computer vision can provide the field of building monitoring with a decisive boost, particularly in the case of heritage buildings.


2021 ◽  
Vol 13 (14) ◽  
pp. 7545
Author(s):  
Nikolai Bardarov ◽  
Vladislav Todorov ◽  
Nicole Christoff

The need to identify wood by its anatomical features requires a detailed analysis of all the elements that make it up. This is a significant problem of structural wood science, the most general and complete solution of which is yet to be sought. In recent years, increasing attention has been paid to the use of computer vision methods to automate processes such as the detection, identification, and classification of different tissues and different tree species. The more successful use of these methods in wood anatomy requires a more precise and comprehensive definition of the anatomical elements, according to their geometric and topological characteristics. In this article, we conduct a detailed analysis of the limits of variation of the location and grouping of vessels in the observed microscopic samples. The present development offers criteria and quantitative indicators for defining the terms shape, location, and group of wood tissues. It is proposed to differentiate the quantitative indicators of the vessels depending on their geometric and topological characteristics. Thus, with the help of computer vision technics, it will be possible to establish topological characteristics of wood vessels, the extraction of which would be used to develop an algorithm for the automatic classification of tree species.


2021 ◽  
Vol 5 (3) ◽  
pp. 32
Author(s):  
Benedikt Mutsch ◽  
Peter Walzel ◽  
Christian J. Kähler

The droplet deformation in dispersing units of high-pressure homogenizers (HPH) is examined experimentally and numerically. Due to the small size of common homogenizer nozzles, the visual analysis of the transient droplet generation is usually not possible. Therefore, a scaled setup was used. The droplet deformation was determined quantitatively by using a shadow imaging technique. It is shown that the influence of transient stresses on the droplets caused by laminar extensional flow upstream the orifice is highly relevant for the droplet breakup behind the nozzle. Classical approaches based on an equilibrium assumption on the other side are not adequate to explain the observed droplet distributions. Based on the experimental results, a relationship from the literature with numerical simulations adopting different models are used to determine the transient droplet deformation during transition through orifices. It is shown that numerical and experimental results are in fairly good agreement at limited settings. It can be concluded that a scaled apparatus is well suited to estimate the transient droplet formation up to the outlet of the orifice.


2020 ◽  
Vol 12 (4) ◽  
pp. 676 ◽  
Author(s):  
Yong Yang ◽  
Wei Tu ◽  
Shuying Huang ◽  
Hangyuan Lu

Pansharpening is the process of fusing a low-resolution multispectral (LRMS) image with a high-resolution panchromatic (PAN) image. In the process of pansharpening, the LRMS image is often directly upsampled by a scale of 4, which may result in the loss of high-frequency details in the fused high-resolution multispectral (HRMS) image. To solve this problem, we put forward a novel progressive cascade deep residual network (PCDRN) with two residual subnetworks for pansharpening. The network adjusts the size of an MS image to the size of a PAN image twice and gradually fuses the LRMS image with the PAN image in a coarse-to-fine manner. To prevent an overly-smooth phenomenon and achieve high-quality fusion results, a multitask loss function is defined to train our network. Furthermore, to eliminate checkerboard artifacts in the fusion results, we employ a resize-convolution approach instead of transposed convolution for upsampling LRMS images. Experimental results on the Pléiades and WorldView-3 datasets prove that PCDRN exhibits superior performance compared to other popular pansharpening methods in terms of quantitative and visual assessments.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Xiang ◽  
Tao Li ◽  
Mao Ye ◽  
Zijian Liu

Pedestrian detection with large intraclass variations is still a challenging task in computer vision. In this paper, we propose a novel pedestrian detection method based on Random Forest. Firstly, we generate a few local templates with different sizes and different locations in positive exemplars. Then, the Random Forest is built whose splitting functions are optimized by maximizing class purity of matching the local templates to the training samples, respectively. To improve the classification accuracy, we adopt a boosting-like algorithm to update the weights of the training samples in a layer-wise fashion. During detection, the trained Random Forest will vote the category when a sliding window is input. Our contributions are the splitting functions based on local template matching with adaptive size and location and iteratively weight updating method. We evaluate the proposed method on 2 well-known challenging datasets: TUD pedestrians and INRIA pedestrians. The experimental results demonstrate that our method achieves state-of-the-art or competitive performance.


1966 ◽  
Vol 1 (4) ◽  
pp. 331-338 ◽  
Author(s):  
T C Hsu

Three different definitions of the yield point have been used in experimental work on the yield locus: proportional limit, proof strain and the ‘yield point’ by backward extrapolation. The theoretical implications of the ‘yield point’ by backward extrapolation are examined in an analysis of the loading and re-loading stress paths. It is shown, in connection with experimental results by Miastkowski and Szczepinski, that the proportional limit found by inspection is in fact a point located by backward extrapolation based on a small section of the stress-strain curve, near the elastic portion of the curve. The effect of different definitions of the yield point on the shape of the yield locus and some considerations for the choice between them are discussed.


Author(s):  
Анна Юрьевна Белякова ◽  
Алена Алексеевна Самохвалова

В статье рассматривается определение остаточных знаний студентов. Для более эффективной и качественной оценки знаний по дисциплинам профессионального блока у студентов направления 09.03.03 - Прикладная информатика предлагается автоматизировать данный процесс. The article discusses the definition of residual knowledge of students. For a more efficient and high-quality assessment of knowledge in the disciplines of the professional block among students of the direction 09.03.03 - Applied Informatics, it is proposed to automate this process.


Sign in / Sign up

Export Citation Format

Share Document