Research on Treatment of Domestic Sewage with Aerobic Denitrifying Bacteria Immobilized by Carbon Fiber

2014 ◽  
Vol 675-677 ◽  
pp. 627-632 ◽  
Author(s):  
Qun Wei ◽  
Di Lv ◽  
Mei Hui Huang ◽  
De Shui Yu ◽  
Jian Qiang You

Aerobic denitrifying bacteria, a fast and efficient strain, is extensively adopted in the wastewater sphere, and immobilized aerobic denitrifying bacteria denitrification Technology, to some extent, solves many problems existing in the direct application of aerobic denitrifying bacteria. Concentrated sulfuric acid, nitric acid, potassium permanganate, ferric chloride etc. are used to pretreat carbon fiber respectively, and then the modified the carbon fiber is applied to fix the activated aerobic denitrifying bacteria to investigate the effects of the modification of the carbon fiber and the effects of wastewater treatment with immobilized aerobic denitrifying bacteria. The results showed that the fixed efficiency of the strain with carbon fiber pretreated by nitric acid reached 50% and when the strain fixed by the modified carbon fiber in adsorption method treated wastewater, the ammonia nitrogen removal rate reached 78% and the COD removal rate was always stabilized above 40% in three days.

Author(s):  
Devi Buehler ◽  
Nadine Antenen ◽  
Matthias Frei ◽  
Christoph Koller ◽  
Diederik P. L. Rousseau ◽  
...  

AbstractIn the scope of this study, a pilot facility for the recycling of laundry effluent was developed and tested. With the aim to enable nearly complete energy and water self-sufficiency, the system is powered by a photovoltaic plant with second-life batteries, treats the wastewater within the unit and constantly reuses the treated wastewater for washing in a closed cycle. The technology for wastewater treatment is based on a low-tech approach consisting of a physical/mechanical pre-treatment and biological treatment in trickling filter columns. The treatment process is operated in batch mode for a capacity of five washing cycles per day. During five weeks of operation water quality, energy consumption and production, water losses and washing performance were monitored. The system recovered 69% of the used water for the washing machine while treating the wastewater to the necessary water quality levels. The average COD removal rate per cycle was 92%. Energy analysis was based on modelled data of the monitored energy consumption. With the current set-up, an internal consumption rate of 80% and self-sufficiency of 30% were modelled. Future developments aim at increasing water and energy self-sufficiency and optimizing the water treatment efficiency.


2011 ◽  
Vol 356-360 ◽  
pp. 1281-1284
Author(s):  
Yan Hong Chang ◽  
Hui Tao Feng ◽  
Hui Luo ◽  
San Jian Ma

The avermectin wastewater was treated with UASB technique. The paper was focused mainly on the removal rate of COD and the change of ammonia nitrogen of influent and effluent wastewater in the first running stage. At the stable phase of anaerobic operation, the removal rate of COD could be stabilized at 85% when the influent volume load was 9.21 kg/(m3•d), and the effluent COD was about 1400 mg/L. As for ammonia nitrogen concentration of influent and effluent wastewater, in the first 50 days, the former was larger than the latter, after then, it was opposite. In the condition of same volume load but different hydraulic retention time (COD concentration of influent being different), COD removal rate kept almost the same. In the second running stage, the influent COD volume load reached 9.21 kg/(m3•d) at the 16th day, with the COD removal rate being around 87%.


2014 ◽  
Vol 955-959 ◽  
pp. 1907-1910
Author(s):  
Su Chen ◽  
Lei Chao ◽  
Ning Chen ◽  
Lin Shan Wang ◽  
Xue Shao ◽  
...  

When the reactor is added with ectoine of concentrations of 0, 0.1, 1 and 10 mmol/L, the impacts on brine waste treatment efficiency are investigated. The results show that the outflow COD and ammonia nitrogen removal rates are the highest, when the ectoine concentration is 0.1 mmol/L. The brine waste treatment efficiency under addition of ectoine of 1 and 10 mmol/L is even worse than that without ectoine addition. It can be preliminarily determined that the best ectoine dosage is in between 0.1-1.0 mmol/L. When ectoine concentrations added in reactors are 0.2, 0.5, 0.8 and 1.0 mmol/L, the results show that the average reactor outflow COD and ammonia nitrogen removal rates are increased compared with those of reactor without adding ectoine. But when ectoine of 1.0 mmol/L is added, the outflow COD and ammonia nitrogen removal rates decrease. When ectoine dosage is 0.5 mmol/L, the reactor outflow COD and ammonia nitrogen values are the lowest, the removal rates are the highest, the average COD removal rate is 74.46%, and the average ammonium nitrogen removal rate is 54.97%. Compared with reactor without adding ectoine, COD and ammonium nitrogen removal rates are increased by 13.16% and 26.81%. Therefore, the best dosage of ectoine is 0.5 mmol/L.


2013 ◽  
Vol 777 ◽  
pp. 206-212
Author(s):  
Lu Ting Pan ◽  
Nai Yuan Zhang ◽  
Kun Wu ◽  
Wen Lei Wang

The characteristics of sludge, the start-up and treatment effect of biological filters with multiple compounded filling are studied with low concentration domestic sewage as treating object. Experiment results shows that it spends 25 days to start up biological filters. The removal rate of COD, ammonia nitrogen, total nitrogen (TN) and total phosphorus (TP) are about 90%, 100%, 80% and 90% respectively. Meanwhile, the Biological electron microscope results show that anaerobic biological membrane presents deep black, more filamentous fungi and a small amount of Ciliates, while aerobic biological membrane presents yellow-green, close-grained bacteria micelle, micro-metazoans such as Aspidisca and Vorticella, proving the success of the biofilm formation.


2015 ◽  
Vol 737 ◽  
pp. 557-560
Author(s):  
Hui Yuan Zhong ◽  
Guan Yi Liu ◽  
Jun Xia Li ◽  
Hao Wang

This study used coagulation - ultrafiltration technology for domestic sewage treatment, which was used widely in water supply and secondary treatment with sewage, in order to achieve high efficiency, low-cost, integrated treatment of domestic sewage treatment. This article chooses fly ash coagulant is not only simple preparation process, low cost, and with the traditional aluminum chloride and ferric chloride coagulation effect. The research results show that the coagulation can make the organic particles size distribution to move to larger particles area and significantly reduce colloidal substance. Ultrafiltration membrane system can further remove the coagulation treatment failed to completely remove polymer and part in the process of low molecular substances, to achieve high organic matter removal efficiency. The backwash of ultrafiltration membrane can make membrane flux recovery by about 80%. This system of SS can remove more than 95%, COD removal rate can reach 60% ~ 70%.


2011 ◽  
Vol 356-360 ◽  
pp. 2153-2157
Author(s):  
Chao Li ◽  
Xiao Yan Zhang ◽  
Jun Liang Liu ◽  
Ding Ding

In this study, we treat rural domestic sewage with the mixture of diatomite and three kinds of coagulant. The result shows that with three mixtures, CODcr removal rate can be above 40%, and above 35% that of ammonia nitrogen. Compared with diatomite alone, the treatment effect has been significantly improved. We can come to a conclusion by the orthogonal experiment that the influencing factors on the effect of coagulant have following order: pH> dosage >stirring time, which means Ph plays an important role on the effect of coagulant.


2012 ◽  
Vol 550-553 ◽  
pp. 2232-2236 ◽  
Author(s):  
Pei Yao Xu ◽  
Xiu Jie Chu ◽  
Yan Qing Li ◽  
Fan Zhang

Abstract. With TiO2 as photocatalyst, hydrogen peroxide(H2O2) as oxidant, treated the coal chemical wastewater under the condition of 30W UV lamp irradiation. Discussed the effects of those factors—pH, dosage of TiO2 powder, dosage of FeCl3, dosage of H2O2 and illumination time etc. on Chemical Oxygen Demand(COD) removal rate of wastewater. The results have shown that: when taking the pH of raw water, TiO2 0.2g per 100ml wastewater, FeCl3 0.01g per 100ml wastewater, H2O2 1.2 ml per 100ml wastewater, 5h illumination time, quiet place 3h, acquired the best photocatalytic effect. After treated under the optimum technological conditions, the COD removal rate reached 70.09%; the removal rate of Biological Oxygen Demand(BOD5), ammonia nitrogen, cyanide and color reached respectively to 58.60%、39.99%, 72.41% and 90%. After repeated 10 times, all the active of TiO2 was almost lost. With the regeneration treatment by high-temperature cauterization, the regenerated catalyst was added into the raw wastewater. Then under the optimum technological conditions, after illuminated 7h, the COD removal rate of wastewater recovered to 49.47%.


2011 ◽  
Vol 356-360 ◽  
pp. 1248-1252
Author(s):  
Ai Bin Kang ◽  
Ying Qiang Yao ◽  
Yu Long Dong

The removal and mechanism of ammonia nitrogen and total nitrogen were studie through three-step series of constructed rapid infiltration system by using high ammonia nitrogen domestic sewage of students' living area in a university. The result shows that the removal rate of ammonia nitrogen is 94.47% by using this system, which is 3% higher than conventional rapid infiltration system.The effluent can meet the standard Ⅰ—A of “Discharge standard of pollutants for municipal wastewater treatment plant(GB 18918-2002)”. The amount of ammonium oxidizing bacteria, nitrate oxidizing bacteria, nitrite oxidizing bacteria in this system is higher than that in conventional rapid infiltration system. The correlation between the removal of ammonia nitrogen and ammonium oxidizing bacteria, nitrate oxidizing bacteria, nitrite oxidizing bacteria is significant. The removal rate of total nitrogen is 47.38% by using this system, which is 20.72% higher than that in conventional rapid infiltration system. However, the effluent still can not meet the standard Ⅰ—A of “Discharge standard of pollutants for municipal wastewater treatment plant (GB 18918-2002)”. The amount of denitrifying bacteria in the three-step subsystem increased significantly, which improves the removal of total nitrogen. The correlation between the removal of TN and denitrification bacteria is significant.


2011 ◽  
Vol 317-319 ◽  
pp. 250-253
Author(s):  
Pan Zhang ◽  
Lei Chen

In order to study changes in the quantity of different denitrifying bacteria during the process of the metal membrane bioreactor, and to determine the relationship between different types of bacteria’s quantity and the treating water quality, the fluorescence in situ hybridization (FISH) dominant molecular biological technologies were used in this study to explore different denitrifying bacteria populations in the active sludge in the denitrification tank on the immersed plate-type metal membrane bioreactor. The study result implies that the addition involvement of the denitrification tank is enormous beneficial to the growth of all bacteria and nitrifying bacteria, meanwhile the removal rate of total nitrogen and ammonia nitrogen is improved as well.


2012 ◽  
Vol 518-523 ◽  
pp. 2530-2534
Author(s):  
Li Jun Nie ◽  
Hua Wen Zhong ◽  
Mei Huang ◽  
Xu Dong Yin

Domestic sewage was treated by adopting flocculation, anaerobic and microaerobic combined process under normal temperature. The result demonstrates: total hydraulic retention time is 5.5h (chemical flocculation 1.0h, UASB reactor 2.0h and MUSB reactor 2.5h). UASB reactor can achieve anaerobic sludge granulation under normal temperature and is fairly feasible for low concentration domestic sewage treatment. Compared with single stage UASB reactor, hydraulic retention time of flocculation-UASB combined technique reduces from 4h to 2h. COD removal rate rises from 45% to 50%-60% and suspended COD is mainly removed. DO of microaerobic MUSB technique after anaerobic treatment is 0.2mg/L-0.5mg/L with air and water ratio of 1:1. Effluent quality is stable, in accordance with first standard of Synthetical Draining Standard of Sewage, GB8978—1996.


Sign in / Sign up

Export Citation Format

Share Document