Design of Automatic Resistance Tester Based on MC9S12DG128

2014 ◽  
Vol 687-691 ◽  
pp. 783-786
Author(s):  
Xiao Min Han

MC9S12DG128 microcontroller as the core, designed a simple automatic resistance tester. Measuring range is 100Ω, 1KΩ, 10KΩ, 10MΩ four gears, accuracy ± (1% reading +2 word); From big to small scanning way, performing the basic measurement and automatic switching function, At the same time, automatically display a decimal point and unit. Key input module to complete the setup by screening resistance and errors, the microcontroller output PWM control servo rotation speed, in order to achieve different potentiometer speed control; Curve display module real-time displays the measured data, and the rotation angle of the potentiometer is displayed in graph form. Using the powerful function of LCD, display Chinese characters, to increase readability, improve the usability of tester. The system is cost-effective, high reliability, has a good application prospect.

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1292
Author(s):  
Hanying Gao ◽  
Guoqiang Zhang ◽  
Wenxue Wang ◽  
Xuechen Liu

The six-phase motor control system has low torque ripple, low harmonic content, and high reliability; therefore, it is suitable for electric vehicles, aerospace, and other applications requiring high power output and reliability. This study presents a superior sensorless control system for a six-phase permanent magnet synchronous motor (PMSM). The mathematical model of a PMSM in a stationary coordinate system is presented. The information of motor speed and position is obtained by using a sliding mode observer (SMO). As torque ripple and harmonic components affect the back electromotive force (BEMF) estimated value through the traditional SMO, the function of the frequency-variable tracker of the stator current (FVTSC) is used instead of the traditional switching function. By improving the SMO method, the BEMF is estimated independently, and its precision is maintained under startup or variable-speed states. In order to improve the estimation accuracy and resistance ability of the observer, the rotor position error was taken as the disturbance term, and the third-order extended state observer (ESO) was constructed to estimate the rotational speed and rotor position through the motor mechanical motion equation. Finally, the effectiveness of the method is verified by simulation and experiment results. The proposed control strategy can effectively improve the dynamic and static performance of PMSM.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000516-000520 ◽  
Author(s):  
John Ganjei ◽  
Ernest Long ◽  
Lenora Toscano

The continuing drive for ever increasing performance enhancement in the electronics industry, in combination with the recent, very significant increase in precious metal costs have left fabricators and OEMs questioning what the best, most cost effective, surface finish is for high reliability applications. Currently, the IC substrate market relies heavily on electrolytic nickel and gold as a solderable and superior wire bondable surface. The use of this finish has allowed manufacturers to avoid the reliability concerns However, this choice also results in significant design restraints being imposed. Many in the industry are now investigating the use of electroless nickel/electroless palladium/immersion gold (ENEPIG) to achieve both high reliability and performance, without the negative design restraints imparted by the use of electrolytic processes. However, over the last year alone, the industry has watched the price of gold increase by 50% and that of palladium double [1]. With this in mind, and considering the historic precedent set in the mid 1990’s when ENEPIG was also evaluated as a surface finish for printed circuit boards, when coincidentally, the cost of palladium also reached an all time high, it should be remembered that the electronics industry quickly moved to evaluate alternate, more cost sustainable, surface finishes. This paper details the use of lower cost, alternate surface finishes for IC substrate applications, with particular experimental focus on gold wire bonding capabilities and BGA solderability of the finishes described. The paper also discusses related process cycle advantages and the significantly reduced operating costs associated with these new finishes.


Author(s):  
Reiner Anton ◽  
Brigitte Heinecke ◽  
Michael Ott ◽  
Rolf Wilkenhoener

The availability and reliability of gas turbine units are critical for success to gas turbine users. Advanced hot gas path components that are used in state-of-the-art gas turbines have to ensure high efficiency, but require advanced technologies for assessment during maintenance inspections in order to decide whether they should be reused or replaced. Furthermore, advanced repair and refurbishment technologies are vital due to the complex nature of such components (e.g., Directionally Solidified (DS) / Single Crystal (SC) materials, thin wall components, new cooling techniques). Advanced repair technologies are essential to allow cost effective refurbishing while maintaining high reliability, to ensure minimum life cycle cost. This paper will discuss some aspects of Siemens development and implementation of advanced technologies for repair and refurbishment. In particular, the following technologies used by Siemens will be addressed: • Weld restoration; • Braze restoration processes; • Coating; • Re-opening of cooling holes.


Author(s):  
Julie McGraw ◽  
Reiner Anton ◽  
Christian Ba¨hr ◽  
Mary Chiozza

In order to promote high efficiency combined with high power output, reliability, and availability, Siemens advanced gas turbines are equipped with state-of-the-art turbine blades and hot gas path parts. These parts embody the latest developments in base materials (single crystal and directionally solidified), as well as complex cooling arrangements (round and shaped holes) and coating systems. A modern gas turbine blade (or other hot gas path part) is a duplex component consisting of base material and coating system. Planned recoating and repair intervals are established as part of the blade design. Advanced repair technologies are essential to allow cost-effective refurbishing while maintaining high reliability. This paper gives an overview of the operating experience and key technologies used to repair these parts.


2014 ◽  
Vol 945-949 ◽  
pp. 298-300
Author(s):  
Hui Yang

based on the current market the present situation of the food processing machinery,developed a stranded multi-functional automatic cutting machine is a ground,shred,slice of function,and can realize automatic switching function


Author(s):  
Jon Plaza Gonza´lez ◽  
Francisco Javier Echarte Casquero ◽  
Javier Va´zquez Mato ◽  
Miguel A´ngel Gonza´lez-Posada

Modern Wind Turbines adjust their blades orientation at different wind speeds for power control and optimum energy production. A big slewing ring about 2 metres diameter placed at each blade root, allows the blade orientation withstanding highly variable heavy loads, vibrations, continuous rotating oscillations and severe ambient conditions. The blade pitch system design and control strategy in a WTG is strongly conditioned by the load dependant friction of the bearing that shall be accurately defined for cost-effective designs. The pitch system is also the main brake of the rotor requiring high reliability for their components under fatigue loads, and in particular for the slewing rings due to its inherent difficulties for maintenance or replacement. The present methodology allows the fatigue and friction estimation of slewing rings, based on rolling bearing models and classical theories like Hertz, Lundberg-Palmgren, and Miner fatigue cumulative damage. This approach simulates the stress supported by each ball in the contact with the raceways, estimates the bearing friction due to these contact stresses, and the fatigue life of the overall bearing.


2017 ◽  
Vol 4 (4) ◽  
pp. 993
Author(s):  
Darshana S. Tote ◽  
Suhas Jajoo ◽  
Panchal A. ◽  
Sachin Tote

Background: Oral cancer is one of the ten most common cancers in world, prevalence being highest in India. The objective of the study was to decide whether it is justifiable to do neck dissection in every case of oral malignancy in true negative necks diagnosed by investigative modalities and to decide whether we can avoid unnecessary block dissection in patient of oral malignancy with negative necks diagnosed by investigation.Methods: It was proposed randomized controlled study conducted over period of 2 years including all patients diagnosed of having oral squamous cell carcinoma. Lymph nodes were assessed by clinical examination and ultrasonography (USG). FNAC was done with the help of USG guidance. After thorough evaluation, the patient was subjected for treatment either surgery or radiotherapy and sometimes chemotherapy. After neck dissection, whole block was sent for histopathological examination. Data collected was analysed on various statistical parameters.Results: For clinical examination consistency and fixity is having high reliability than size and shape. On USG central necrosis, ECS, shape and RI were having specificity and accuracy. Sensitivity, specificity and accuracy of USG FNAC is more.Conclusions: USG and USG FNAC are helpful methods in directing further work up in more efficient and cost-effective manner and these help in reaching diagnosis more accurately than the clinical examination alone and thus it is considered second step in evaluation of neck only after clinical examination. 


2020 ◽  
Vol 2 (1) ◽  
pp. 75
Author(s):  
Manuel A. Herrera-Juárez ◽  
Roberto G. Ramírez-Chavarría

The most common way for accessing healthcare and monitoring physiological signals is based on commercial devices. Most of them are, in general, expensive, highly invasive, and require sophisticated infrastructure for operating. Nowadays, wearable devices (WD) offer an attractive technology for circumventing the limitations of classic medical devices. The design of WD, however, remains a challenging task to reach high-performance, reliability, and to be ergonomic. In this work, we develop, to the best of our knowledge, a novel WD with two main highlights. (i) Our device is based on a low-power 32-bit microcontroller, embedding a Bluetooth Low Energy (BLE) module for wireless data streaming with a mobile application for signal monitoring and recording, alongside a warning notification system. (ii) The proposed WD has a modular and flexible design, such that the user can increase the number of sensors by sharing the acquisition and processing system, thus reducing the hardware requirements and exhibiting a minimally invasive arrangement. For all the WD stages, we show their design methodology, the tests for characterizing their performance, and the results obtained from a case of study. For the latter, we consider two sensor prototypes for measuring the corporal temperature with a passive sensor, as well as the breath and heart rates via photoplethysmography signals. Results show that our WD is a cost-effective alternative and a promising tool for healthcare monitoring, as it operates in agreement with physiological levels with high-reliability.


2022 ◽  
Vol 12 (2) ◽  
pp. 544
Author(s):  
Hakim Abdulrab ◽  
Fawnizu Azmadi Hussin ◽  
Azrina Abd Aziz ◽  
Azlan Awang ◽  
Idris Ismail ◽  
...  

Communication in industrial wireless networks necessitates reliability and precision. Besides, the existence of interference or traffic in the network must not affect the estimated network properties. Therefore, data packets have to be sent within a certain time frame and over a reliable connection. However, the working scenarios and the characteristics of the network itself make it vulnerable to node or link faults, which impact the transmission reliability and overall performance. This article aims to introduce a developed multipath routing model, which leads to cost-effective planning, low latency and high reliability of industrial wireless mesh networks, such as the WirelessHART networks. The multipath routing model has three primary paths, and each path has a backup node. The backup node stores the data transmitted by the parent node to grant communication continuity when primary nodes fail. The multipath routing model is developed based on optimal network planning and deployment algorithm. Simulations were conducted on a WirelessHART simulator using Network Simulator (NS2). The performance of the developed model is compared with the state-of-the-art. The obtained results reveal a significant reduction in the average network latency, low power consumption, better improvement in expected network lifetime, and enhanced packet delivery ratio which improve network reliability.


Sign in / Sign up

Export Citation Format

Share Document