Preparation and Characterization of PLA /Rice Straw Fiber Composite

2011 ◽  
Vol 71-78 ◽  
pp. 1154-1157 ◽  
Author(s):  
Zhi Fei Liao ◽  
Guo Lin Song ◽  
Feng Shi ◽  
Zhan Song Yin ◽  
You Yang ◽  
...  

The PLA/Rice straw fiber composites with various content ratios were prepared by using an internal mixer and a flatten press. The thermal properties, interface effect and mechanical performance of as-prepared PLA/Rice straw fiber composites were studied by mechanical performance measurement, TG, DSC and SEM technique. It was found that increasing the content of rice straw fiber leads to the decrease of the melting temperature while the improvement of the crystallinity of these composites. Introducing the rice straw fibers into PLA matrix does not result in any enhancement of mechanical property. However, the tensile strength of the composite increases as the content of rice straw fiber increases from 10% to 30%. The interface effect between fibers and PLA was obviously observed by SEM photo. It was thought such an issue could be improved by the addition of appropriate coupling agents into the composites.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2139
Author(s):  
Wei Shian Tey ◽  
Chao Cai ◽  
Kun Zhou

Multi Jet Fusion (MJF) is a recently developed polymeric powder bed fusion (PBF) additive manufacturing technique that has received considerable attention in the industrial and scientific community due to its ability to fabricate functional and complex polymeric parts efficiently. In this work, a systematic characterization of the physicochemical properties of MJF-certified polyamide 11 (PA11) and thermoplastic polyurethane (TPU) powder was conducted. The mechanical performance and print quality of the specimens printed using both powders were then evaluated. Both PA11 and TPU powders showed irregular morphology with sharp features and had broad particle size distribution, but such features did not impair their printability significantly. According to the DSC scans, the PA11 specimen exhibited two endothermic peaks, while the TPU specimen exhibited a broad endothermic peak (116–150 °C). The PA11 specimens possessed the highest tensile strength in the Z orientation, as opposed to the TPU specimens which possessed the lowest tensile strength along the same orientation. The flexural properties of the PA11 and TPU specimens displayed a similar anisotropy where the flexural strength was highest in the Z orientation and lowest in the X orientation. The porosity values of both the PA11 and the TPU specimens were observed to be the lowest in the Z orientation and highest in the X orientation, which was the opposite of the trend observed for the flexural strength of the specimens. The PA11 specimen possessed a low coefficient of friction (COF) of 0.13 and wear rate of 8.68 × 10−5 mm3/Nm as compared to the TPU specimen, which had a COF of 0.55 and wear rate of 0.012 mm3/Nm. The PA11 specimens generally had lower roughness values on their surfaces (Ra < 25 μm), while the TPU specimens had much rougher surfaces (Ra > 40 μm). This investigation aims to uncover and explain phenomena that are unique to the MJF process of PA11 and TPU while also serving as a benchmark against similar polymeric parts printed using other PBF processes.


Author(s):  
Faris M. AL-Oqla

The available potential plant waste could be worthy material to strengthen polymers to make sustainable products and structural components. Therefore, modeling the natural fiber polymeric-based composites is currently required to reveal the mechanical performance of such polymeric green composites for various green products. This work numerically investigates the effect of various fiber types, fiber loading, and reinforcement conditions with different polymer matrices towards predicting the mechanical performance of such natural fiber composites. Cantilever beam and compression schemes were considered as two different mechanical loading conditions for structural applications of such composite materials. Finite element analysis was conducted to modeling the natural fiber composite materials. The interaction between the fibers and the matrices was considered as an interfacial friction force and was determined from experimental work by the pull out technique for each polymer and fiber type. Both polypropylene and polyethylene were considered as composite matrices. Olive and lemon leaf fibers were considered as reinforcements. Results have revealed that the deflection resistance of the natural fiber composites in cantilever beam was enhanced for several reinforcement conditions. The fiber reinforcement was capable of enhancing the mechanical performance of the polymers and was the best in case of 20 wt.% polypropylene/lemon composites due to better stress transfer within the composite. However, the 40 wt.% case was the worst in enhancing the mechanical performance in both cantilever beam and compression cases. The 30 wt.% of polyethylene/olive fiber was the best in reducing the deflection of the cantilever beam case. The prediction of mechanical performance of natural fiber composites via proper numerical analysis would enhance the process of selecting the appropriate polymer and fiber types. It can contribute finding the proper reinforcement conditions to enhance the mechanical performance of the natural fiber composites to expand their reliable implementations in more industrial applications.


2017 ◽  
Vol 26 (5) ◽  
pp. 096369351702600 ◽  
Author(s):  
Wenjing Xia ◽  
Nianqing Zhu ◽  
Zhongbin Ni ◽  
Mingqing Chen

Biodegradable composites from poly (butylene succinate-co-butylene adipate) (PBSA) and Taihu Lake (Wuxi, China) blue algae were prepared by melt blending. The property and structure of biocomposites were investigated. By adding extra amount of water to blue algae, the formulated blue algae acted as a plastic in the composites during blending, and exhibited a reinforcing effect on the PBSA matrix. With increasing blue algae content, the thermal stability of the composites decreased; the tensile strength at break and elongation at break of the composites reduced, but the Young's modulus of the composites increased. However, the composite with 30% blue algae loading still exhibited good mechanical performance (tensile strength at break of 21.3 MPa, elongation at break of 180%). The fabrication of value-added PBSA/algae composites appeared as an effective approach to reduce the secondary environmental pollution of Taihu blue algae.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 78
Author(s):  
C. Thiruvasagam ◽  
S. Prabagaran ◽  
P. Suresh

The research paper involves fiber composites form a special category materials that are contributing to present swaping of manufactured  hybrid  which finds traditional and non traditional applications. The study explains which are accentuates and optimizing for the recently recognized snake grass standard materials. In this article, the prospecting performance characterization of SG fiber is selected and contrasted as per the ASTM standard. This study additionally manages the examination apply different phenomena of this stages in Jute and snake as fortifications utilized index ended a try. Experiments have been conducted on normal Filaments, snake grass, Glass Fiber and Jute to analyse their Mechanical properties. The common strands are orchestrated in the flat and vertical heading as transferred quality on all sides. Microstructural analysis of these hybrid composite is observed using Scanning  Electron Microscope that reveals bonding and Filament breaksge, Voids and Fiber decover which are further investigated.


2020 ◽  
Vol 32 (9) ◽  
pp. 1043-1051
Author(s):  
Lu Kuang ◽  
Wei-Hong Wei ◽  
Xiao-Yan Sang ◽  
Yang Pan ◽  
Cheng Song

1,4-Bis(3,4-dicarboxybenzoyl)benzene dianhydride, an aromatic bis(ketone anhydride) monomer, was synthesized by the Friedel–Crafts reaction of terephthaloyl dichloride and o-xylene, followed by the oxidation of the intermediate tetramethylated compound and cyclodehydration of the resulting tetraacid. A series of new poly(diketone imide)s (PDKIs) were prepared from this dianhydride with various aromatic diamines via a conventional two-stage process that included ring-opening polyaddition to form the poly(amic acid)s followed by thermal or chemical imidization. Most of the PDKIs through chemical imidization were soluble in aprotic amide solvents, such as N, N-dimethylacetamide, N-methyl-2-pyrrolidone, m-cresol, and so on. The resulting PDKIs had good thermal property with the glass transition temperature of 203–275°C, the temperature at 5% weight loss of 500–539°C, and the residue of 51–60% at 800°C in nitrogen. Additionally, strong and flexible PDKI films obtained by thermal imidization exhibited outstanding mechanical property with the tensile strength of 88.8–158.5 MPa, tensile modulus of 1.9–3.5 GPa, and elongation at breakage of 7–21%.


2019 ◽  
Vol 33 (11) ◽  
pp. 1449-1465 ◽  
Author(s):  
Cagrialp Arslan ◽  
Mehmet Dogan

The purpose of this study was to examine the effects of silane coupling agent modifications on the mechanical performance of the basalt fiber (BF)-reinforced acrylonitrile–butadiene–styrene (ABS) composites. Three different silane coupling agents were used. The mechanical properties of the composites were determined by the tensile, flexural, impact tests, and dynamic mechanical analysis (DMA). According to the test results, the tensile strength increased with the use of (3-aminopropyl) triethoxysilane (AP) and 3-(trimethoxysilyl) propylmethacrylate (MA), while the use of (3-glycidyloxypropyl) trimethoxysilane (GP) reduced the tensile strength. All the silane modifications improved the flexural strength and modulus and the highest improvement was achieved with the use of AP. No remarkable difference was observed in impact properties with the use of silane coupling agents. The addition of BF significantly improved the elastic modulus of the ABS regardless of the modification type, while the further improvements were achieved through the use of AP and MA. In brief, AP showed the highest performance among the studied silane coupling agents due to the covalent bond formation between the amino group of AP and the nitrile group of styrene–acrylonitrile (SAN) matrix.


2015 ◽  
Vol 761 ◽  
pp. 526-530
Author(s):  
Noraiham Mohamad ◽  
Anisah Abd Latiff ◽  
Mohamad Azrul Drahman ◽  
Siti Rahmah Shamsuri ◽  
Jeeferie Abdil Razak ◽  
...  

Carbon fiber reinforced thermoplastics are in demand for high performance composites, particularly for the aircraft industry. Waste disposal of carbon fiber in the form of off-cuts, out of life of prepreg and end-of-life components lead to the environmental pollution. This study focuses on the processing and characterization of carbon fiber prepreg comminutes reinforced polypropylene (PP) produced by melt compounding using an internal mixer. In this study, end-of-life carbon fiber prepreg were crushed into fine fibers and dried in oven at 220°C for one hour. It was divided into two types; (1) partially cured carbon fiber prepreg (c-CFP) and, (2) fully cured carbon fiber prepreg (c-CF). The composites were prepared by melt compounding in a Haake internal mixer at 180°C, 50 rpm for 10 minutes. Samples were tested for tensile properties (ASTM D638) and the morphology of fractured surface was observed using Scanning Electron Microscopy (SEM). Increasing carbon fiber in polypropylene was found to increase the Young’s modulus of the composites, but decreased the tensile strength. However, the tensile strength of composites with c-CFP were observed to surpass the neat PP at every loading level. Whereas for composites with c-CF the tensile strength was comparable to the neat PP only within the range of 3 – 5 wt.%.


2014 ◽  
Vol 534 ◽  
pp. 75-80
Author(s):  
Mustapha Rohani ◽  
Mohamad Awang ◽  
Asmadi Ali ◽  
Ali Noraaini ◽  
Adhha Abdullah Mohd Aidil

Preparation of Alpinia galanga agro waste-high density polyethylene (HDPE) composites involved the addition of eco degradant and polyethylene-g-maleic anhydride (PE-g-MA). The Alpinia galanga agro waste fibers at 3, 6, 10 and 15 wt% were compounded in an internal mixer with the addition of 5 wt% MA-g-PE and eco degradant. The composite specimens were prepared using an injection molding machine. The results show that the maximum tensile strength of 33 MPa was obtained for sodium hydroxide (NaOH) & 3-aminopropyltriethoxysilane (3-APE) treated fiber composites with eco degradant and MA-g-PE at 15 wt% fiber loading compared to that of pristine HDPE (28 MPa). All the treated composites show an improvement in tensile strength. This indicates that the treatments using NaOH&3-APE and p-toluenesulfonic acid (PTSA) with addition of eco degradant and PE-g-MA improved adhesion between Alpinia galanga fiber and HDPE matrix. The Scanning Electron Microscopy (SEM) micrographs show the presence of a improved interaction between treated Alpinia galanga fibers and HDPE matrix with the addition of eco degradant and MA-g-PE. Thermal stability of composites was also improved for composites with treated fibers.


Author(s):  
Fatimah Marwa Nasution

Research has been conducted on the manufacture and characterization of pineapple leaf fiber composites – polypropylene matrix. Samples with comparison of pineapple leaf fiber composition: polypropylene matrix by 0 %: 100%, 5%: 95%, 10%:90%, 15%:85%, 20%;80%, and 25%:75%. The manufacture of SDN-PP composites, i.e. fiber soaked with NaOH 5% for 2 hours and then rinsed with clean water and dried, then weighed. Polypropylene and MAPP are effluxed with xylen solvent using a reflux device over a hot plate with a temperature of 17oC until melted. The polypropylene that has been diflux weighed in mass and pineapple leaf fibers are placed into a mold then pressed with a hot press at a temperature of 150oC for 30 minutes. The purpose of the study was to find out the physical and mechanical properties of pineapple leaf-matrix polypropylene fibers. Density values 0.75 g/cm3 to 0.9 g/cm3, water absorption values 0.54% to 14.38%, strong compressive values 25.09 MPa to 49.58 MPa, and strong values impact 9.74 J/mm2 to 34.18 J/mm2.  Pineapple leaf fiber composite – the resulting polypropylene matrix can be categorized as a high-crust fiberboard (HF) and applied as a decorative board in accordance with the fiberboard standards set out in SNI 01-4449-2006.


Sign in / Sign up

Export Citation Format

Share Document