Thermal Aging Behavior of Ethylene Propylene Diene Monomer (EPDM) Rubber

2015 ◽  
Vol 727-728 ◽  
pp. 47-50 ◽  
Author(s):  
Jie Liu ◽  
Bin Wang ◽  
Lun Wu Zhang ◽  
Lei Zhu ◽  
Tian Yuan Luo

Ethylene propylene diene monomer (EPDM) rubber was exposed to an accelerated thermal aging environment produced by an air-circulating oven for different time periods. The changes of thermal stability and chemical structures of EPDM were monitored by thermo-gravimetric analysis (TGA), Attenuated total reflection-fourier transform infrared spectroscopy (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS). The results showed that the accelerated thermal aging environment did not obviously affect the thermal stability of EPDM. FTIR and XPS confirmed the formation of hydroxyl, carbonyl and ester groups in the test environment.

2013 ◽  
Vol 807-809 ◽  
pp. 2718-2721
Author(s):  
Li Na Ma ◽  
Yu Zeng Zhao ◽  
Hong Hua Ge ◽  
Kuai Ying Liu

Several kinds of rubbers used for fabric expansion joints were studied by Thermogravimetric analysis under inert atmosphere before and after artificial accelerated thermal aging. The results showed that because of the difference of the chemical structures, the rubber aging is different. And the thermal stability of Polytetrafluoroethylene (PTFE) was obviously higher than that of other two kinds of rubbers, ethylene-propylene-diene-terpolymer rubber (EPDM) and fluororubber.


2020 ◽  
Vol 115 (4) ◽  
pp. 132-139
Author(s):  
Muhammad Naveed Ashraf ◽  
Shahzad Maqsood Khan ◽  
Shahid Munir ◽  
Rashid Saleem

Formaldehyde has many applications in the chemical industry including synthesis of amino resins which are used in leather processing. After application in leather, these resins are hydrolyzed under certain conditions to release free formaldehyde which has high environmental concerns due to its proven carcinogenic effects. The objective of this work is to develop a formaldehyde free melamine-based resin to produce green leather with improved retanning properties and thermal stability. The optimum melamine resin was synthesized by condensing melamine with glyoxal instead of formaldehyde. Further, the water solubility and improved thermal stability of synthesized melamine resins were achieved by introduction of sulfanilic acid in resin structure. Synthesized resin was used in leather retanning in comparison with commercially available melamine resin as a control. Both leathers were tested for mechanical properties, organoleptic properties, grain surface and fiber structure analysis. Comparative free formaldehyde content was measured in resultant leathers. Effluents of retanning baths were comparatively analyzed. Optimum resin was also characterized by thermo gravimetric analysis and FTIR. The results of this study showed that the experimental resin has imparted significant improvement in mechanical and organoleptic properties of leather as compared to the control resin. Analysis of free formaldehyde content confirmed the absence of free formaldehyde in leather treated with optimum resin while 141 mg/kg formaldehyde was detected in leather treated with control resin. Free formaldehyde was also absent in effluent of experimental resin while 305 mg/kg formaldehyde was detected in effluent of control resin. Moreover, percentage efficiency in COD, TDS and TSS load of effluent was observed as 9.62, 7.2 and 6.31 respectively.  Resultant leather was free from formaldehyde making it safe for human along with reduction in pollution load of tannery.  


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


2011 ◽  
Vol 415-417 ◽  
pp. 666-670 ◽  
Author(s):  
Na Lu ◽  
Shubhashini Oza ◽  
Ian Ferguson

Natural fiber reinforced composites are being used as reinforcement material in composite system due to their positive environmental benefits. Added to that, natural fibers offer advantages such as low density, low cost, good toughness, high specific strength, relatively non-abrasive and wide availability. However, the low thermal stability of natural fibers is one of the major challenges to increase their use as reinforcing component. In this study, a thorough investigation has been done to compare the effect of two chemical treatment methods on the thermal stability of hemp fibers. 5wt% sodium hydroxide and 5wt% triethoxyvinylsilane was used for the treatment of hemp fibers. Fourier transform infrared spectroscopy, scanning electron microscopy and thermo gravimetric analysis were used for characterization of untreated and treated fiber. The results indicated that 24 hours alkali treatment and 3 hours silane treatment time enhanced the thermal stability of the hemp fiber. However, alkali treatment shows better improvement compared to silane treatment.


Author(s):  
Ping Liu ◽  
Xin Wang ◽  
Jiang Wu ◽  
Wang Lin ◽  
Yanhan Feng ◽  
...  

Two novel boron-nitrogen modified soybean oil additives with different length of chain structures (abbreviated as BNS1 and BNS2) were synthesized. The thermal stability of BNS1 and BNS2 was evaluated by thermo-gravimetric analysis. The effect of the as-synthesized additives on the biodegradability, anti-oxidation property, and lubricity in rapeseed oil was evaluated by respective standard method. Moreover, the morphology and tribochemical characteristics of the worn surfaces were examined by scanning electron microscope assembled with energy dispersive spectrometer. The results indicated that BNS1 and BNS2 both possess good thermal stability; BNS1 slightly impairs the biodegradability of rapeseed oil, but BNS2 facilitates the biodegradability of rapeseed oil. BNS1 and BNS2 could improve the anti-wear and friction-reducing performance of the rapeseed oil, but BNS1 exhibited better anti-wear ability as compared to that of BNS2, BNS2 exhibited better anti-wear ability in reducing friction coefficients as compared to that of BNS1. The enhanced anti-wear and friction-reducing abilities of rapeseed oil were ascribed to the formation of a composite boundary lubrication film due to the strong adsorption of BNS1 or BNS2 and rapeseed oil onto the lubricated surfaces and their tribochemical reactions with metal surfaces. BNS1 and BNS2 could both facilitate the anti-oxidation properties of the rapeseed oil.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2051
Author(s):  
Shuanye Han ◽  
Haibin Wei ◽  
Leilei Han ◽  
Qinglin Li

To reduce the impact of road ice and snow disaster, it is necessary to adopt low energy consumption and efficient active deicing and snow melting methods. In this article, three functional components are combined into a conductive ethylene propylene diene monomer (EPDM) rubber composite material with good interface bonding. Among them, the mechanical and electrical properties of the composite material are enhanced by using carbon fiber cloth as a heating layer. EPDM rubber plays a mainly protective role. Further, aluminum silicate fiber cloth is used as a thermal insulation layer. The mechanical properties of EPDM rubber composites reinforced by carbon fiber cloth and the thermal behaviors of the composite material in high and low temperature environments were studied. The heat generation and heat transfer effect of the composite were analyzed by electrothermal tests. The results show that the conductive EPDM rubber composite material has good temperature durability, outstanding mechanical stability, and excellent heat production capacity. The feasibility of the material for road active deicing and snow melting is verified. It is a kind of electric heating deicing material with broad application prospects.


2016 ◽  
Vol 857 ◽  
pp. 191-195 ◽  
Author(s):  
A. Nadiatul Husna ◽  
Bee Ying Lim ◽  
H. Salmah ◽  
Chun Hong Voon

Palm kernel shells (PKS) filled recycled high density polyethylene (rHDPE) biocomposites were produced using melt mixing. The biocomposites were prepared on Brabender Plasticorder at temperature of 185 °C and rotor speed of 50 rpm by varying filler loading (0 to 40 phr). In this study, the effect of PKS loading on rheological properties and thermal stability of rHDPE/PKS were investigated. Rheological study of the biocomposites was carried out by means of capillary rheometer under temperature of 190 °C, 200 °C and 210 °C. Thermal properties of biocomposites were studied by using thermo gravimetric analysis (TGA). The rheological results showed that the flowability of the composite increased with increasing temperature. Meanwhile, the result of TGA showed that at higher PKS loading, rHDPE/PKS biocomposites had lower total weight loss. The thermal stability of the biocomposites was reduced due to the addition of filler loading.


Sign in / Sign up

Export Citation Format

Share Document