pH Measurement Using Titanium Dioxide Nanoparticles Thin Film Based Sensors

2015 ◽  
Vol 754-755 ◽  
pp. 1120-1125 ◽  
Author(s):  
A.Y.P. Puah ◽  
Sharipah Nadzirah ◽  
Mohd Khairuddin Md Arshad ◽  
R.M. Ayub ◽  
A. Rahim Ruslinda ◽  
...  

Optimization gap size and integration of TiO2nanoparticles thin film produce a sensitive sensor device. Sol-gel spin coated TiO2nanoparticles thin film is coated on a conventional fabricated IDEs with gap sizes of 7 μm, 10 μm, 14 μm and 17 μm which is then validated through electrical characterization. I-V characteristics of without and with TiO2thin film of various gap sizes are subjected to pH test are then plotted to describe the resistance of the devices and correlate with the sensitivity measurement. Sensing devices show that devices with larger spacing and greater pH values have higher current. On the other hand, integration of TiO2thin film reduced the resistance of devices. Among the four gap sizes, 7 μm gap sized device is the most sensitive one due to the tremendous difference after small amount of pH dropped on surface, thus lowering the detection limit.

2011 ◽  
Vol 331 ◽  
pp. 270-274 ◽  
Author(s):  
Yan Yan Chu ◽  
Qing Wang ◽  
Shi Zhong Cui

Abstract:Pure TiO2 water sol, pure ZnO water sol and three compound TiO2/ZnO water sols are prepared under low temperature. Then the padding and baking process is used to put the functional sol liquid on the fabric. SEM is use to analyzed the change of surface feature and the result show that all of the water sol except pure ZnO water sol liquid formed a thin film on the fiber The stability of pure ZnO water sol is the best one and the pure TiO2 water sol is the worst one at temperature of 15°C. The compound water sols stabilities are between these two water sols and with the more amount of ZnO, the stability last longer. Both mole of TiO2 and ZnO with the rate of 5 to 5 and 7 to 3 display the best antistatic behavior, but the washing fastnesses are not good. After treatment, the moisture regain displays most dramatically changes; the next one is whiteness of fabric, but the other physical and mechanical properties have a little change.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 287 ◽  
Author(s):  
Gian Carlo Cardarilli ◽  
Gaurav Mani Khanal ◽  
Luca Di Nunzio ◽  
Marco Re ◽  
Rocco Fazzolari ◽  
...  

An oxygen-rich ZnO-reduced graphene oxide (rGO) thin film was synthesized using a photo-annealing technique from zinc precursor (ZnO)–graphene oxide (GO) sol–gel solution. X-ray diffraction (XRD) results show a clear characteristic peak corresponding to rGO. The scanning electron microscope (SEM) image of the prepared thin film shows an evenly distributed wrinkled surface structure. Transition Metal Oxide (TMO)-based memristive devices are nominees for beyond CMOS Non-Volatile Memory (NVRAM) devices. The two-terminal Metal–TMO (Insulator)–Metal (MIM) memristive device is fabricated using a synthesized ZnO–rGO as an active layer on fluorine-doped tin oxide (FTO)-coated glass substrate. Aluminum (Al) is deposited as a top metal contact on the ZnO–rGO active layer to complete the device. Photo annealing was used to reduce the GO to rGO to make the proposed method suitable for fabricating ZnO–rGO thin-film devices on flexible substrates. The electrical characterization of the Al–ZnO–rGO–FTO device confirms the coexistence of memristive and memimpedance characteristics. The coexistence of memory resistance and memory impedance in the same device could be valuable for developing novel programmable analog filters and self-resonating circuits and systems.


Author(s):  
Priyabrata Pattanaik ◽  
Pratyus Pattnayak ◽  
Chinmaya Behera ◽  
Sushanta Kumar Kamilla ◽  
Debi Prasad Das

2013 ◽  
Vol 832 ◽  
pp. 124-127 ◽  
Author(s):  
Sharipah Nadzirah ◽  
Uda Hashim

This paper studies the Capacitance-Frequency of titanium dioxide (TiO2) thin film-based interdigitated electrodes (IDEs) for ss-DNA immobilization. TiO2thin film was deposited on P-type silicon dioxide (SiO2) (1 0 0) substrates using monoethanolamine (MEA) sol-gel route by spin-coating method. Titanium butoxide was used as a precursor source while ethanol and MEA were used as a disperser and stabilizer respectively. Metal IDEs of aluminium (Al) was deposited on the synthesized films for the electrical characterization. From the electrical data, it proves that the synthesized TiO2thin film is effective and can be used for the synthesis of TiO2thin films with biomedical application.


1999 ◽  
Vol 606 ◽  
Author(s):  
Keishi Nishio ◽  
Jirawat Thongrueng ◽  
Yuichi Watanabe ◽  
Toshio Tsuchiya

AbstructWe succeeded in the preparation of strontium-barium niobate (Sr0.3Ba0.7Nb2O6 : SBN30)that have a tetragonal tungsten bronze type structure thin films on SrTiO3 (100), STO, or La doped SrTiO3 (100), LSTO, single crystal substrates by a spin coating process. LSTO substrate can be used for electrode. A homogeneous coating solution was prepared with Sr and Ba acetates and Nb(OEt)5 as raw materials, and acetic acid and diethylene glycol monomethyl ether as solvents. The coating thin films were sintered at temperature from 700 to 1000°C for 10 min in air. It was confirmed that the thin films on STO substrate sintered above 700°C were in the epitaxial growth because the 16 diffraction spots were observed on the pole figure using (121) reflection. The <130> and <310> direction of the thin film on STO were oriented with the c-axis in parallel to the substrate surface. However, the diffraction spots of thin film on LSTO substrate sintered at 700°C were corresponds to the expected pattern for (110).


Author(s):  
Dong XU ◽  
Qi SONG ◽  
Ke ZHANG ◽  
Hong-Xing XU ◽  
Yong-Tao YANG ◽  
...  
Keyword(s):  
Sol Gel ◽  

2018 ◽  
Vol 15 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Chengpeng Xu ◽  
Shengying Ye ◽  
Xiaolei Cui ◽  
Quan Zhang ◽  
Yan Liang

Background: Improper storage and raw materials make peanut oil susceptible to Aflatoxin B1 (AFB1). The semiconductor TiO2 photocatalysis technology is an effective technology which is widely used in sewage treatment, environmental protection and so on. Moreover, the photocatalytic efficiency can be improved by doping I. Method: The experiment is divided into two parts. In the first part, supported TiO2 thin film (STF) was prepared on the quartz glass tube (QGT) by the sol-gel and calcination method and the supported iodine doped supported TiO2 thin film (I-STF) was synthesized using potassium iodate solution. In the second part, the photocatalytic degradation of AFB1 was performed in a self-made photocatalytic reactor. The AFB1 was detected by ELISA kit. Results: The photocatalytic degradation of AFB1 has been proven to follow pseudo first-order reaction kinetics well (R2 > 0.95). The maximum degradation rate of 81.96%, which was reached at the optimum iodine concentration of 0.1mol/L, was 11.38% higher than that with undoped STF. The doping of iodine reduces the band-gap of TiO2, thereby increasing the photocatalytic response range. The proportion of Ti4+ in I-STF has decreased, which means that Ti4+ are replaced by I. The I-STF prepared at iodine concentration of 0.1mol/L has good photocatalytic properties.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 200
Author(s):  
Do Won Kim ◽  
Hyeon Joong Kim ◽  
Changmin Lee ◽  
Kyoungdu Kim ◽  
Jin-Hyuk Bae ◽  
...  

Sol-gel processed SnO2 thin-film transistors (TFTs) were fabricated on SiO2/p+ Si substrates. The SnO2 active channel layer was deposited by the sol-gel spin coating method. Precursor concentration influenced the film thickness and surface roughness. As the concentration of the precursor was increased, the deposited films were thicker and smoother. The device performance was influenced by the thickness and roughness of the SnO2 active channel layer. Decreased precursor concentration resulted in a fabricated device with lower field-effect mobility, larger subthreshold swing (SS), and increased threshold voltage (Vth), originating from the lower free carrier concentration and increase in trap sites. The fabricated SnO2 TFTs, with an optimized 0.030 M precursor, had a field-effect mobility of 9.38 cm2/Vs, an SS of 1.99, an Ion/Ioff value of ~4.0 × 107, and showed enhancement mode operation and positive Vth, equal to 9.83 V.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 625
Author(s):  
Fatma Y. Ahmed ◽  
Usama Farghaly Aly ◽  
Rehab Mahmoud Abd El-Baky ◽  
Nancy G. F. M. Waly

Most of the infections caused by multi-drug resistant (MDR) P. aeruginosa strains are extremely difficult to be treated with conventional antibiotics. Biofilm formation and efflux pumps are recognized as the major antibiotic resistance mechanisms in MDR P. aeruginosa. Biofilm formation by P. aeruginosa depends mainly on the cell-to-cell communication quorum-sensing (QS) systems. Titanium dioxide nanoparticles (TDN) have been used as antimicrobial agents against several microorganisms but have not been reported as an anti-QS agent. This study aims to evaluate the impact of titanium dioxide nanoparticles (TDN) on QS and efflux pump genes expression in MDR P. aeruginosa isolates. The antimicrobial susceptibility of 25 P. aeruginosa isolates were performed by Kirby–Bauer disc diffusion. Titanium dioxide nanoparticles (TDN) were prepared by the sol gel method and characterized by different techniques (DLS, HR-TEM, XRD, and FTIR). The expression of efflux pumps in the MDR isolates was detected by the determination of MICs of different antibiotics in the presence and absence of carbonyl cyanide m-chlorophenylhydrazone (CCCP). Biofilm formation and the antibiofilm activity of TDN were determined using the tissue culture plate method. The effects of TDN on the expression of QS genes and efflux pump genes were tested using real-time polymerase chain reaction (RT-PCR). The average size of the TDNs was 64.77 nm. It was found that TDN showed a significant reduction in biofilm formation (96%) and represented superior antibacterial activity against P. aeruginosa strains in comparison to titanium dioxide powder. In addition, the use of TDN alone or in combination with antibiotics resulted in significant downregulation of the efflux pump genes (MexY, MexB, MexA) and QS-regulated genes (lasR, lasI, rhll, rhlR, pqsA, pqsR) in comparison to the untreated isolate. TDN can increase the therapeutic efficacy of traditional antibiotics by affecting efflux pump expression and quorum-sensing genes controlling biofilm production.


Sign in / Sign up

Export Citation Format

Share Document