Fluidization Characteristic of Sewage Sludge Particles

2015 ◽  
Vol 776 ◽  
pp. 294-299
Author(s):  
I. Nyoman Suprapta Winaya ◽  
Rukmi Sari Hartati ◽  
I. Nyoman Gde Sujana

The main objective of this study is to determine the basic characteristics of fluidization using sewage sludge particle as non-visual phenomena which can then be modeled physically and numerically with the program of Computational Fluid Dynamic (CFD). CFD modeling using Eulerian model incorporating the kinetic theory for solid particles was applied to the gas-solid flow at various superficial velocities for different particle sizes. The transfer momentum was calculated using Syamlal-O'Brien drag function and Eulerian multiphase model was used for analysis. Two-Dimensional computational domains discretized using rectangular cells (Quad), made within the 20 iteration steps of 0,001s. The gas velocity is found to be the ​​the most important factors that influence the formation process of fluidization; by increasing the rate of fluidization the bed expanse occurs higher as well the time of onset fluidization is shorter. The phenomenon can be explained well by modeling and simulation.

Author(s):  
Quamrul H. Mazumder

Solid particle erosion is a micromechanical process that is influenced by flow geometry, material of the impacting surface, impact angle, particle size and shape, particle velocity, flow condition and fluid properties. Among the various factors, particle size and velocity have been considered to be the most important parameters that cause erosion. Particle size and velocity are influenced by surrounding flow velocities and carrying fluid properties. Higher erosion rates have been observed in gas-solid flow in geometries where the flow direction changes rapidly, such as elbows, tees, valves, etc., due to local turbulence and unsteady flow behaviors. S-bend geometry is widely used in different fluid handling applications such as automotive, oil and gas, arteries and blood vessels. This paper presents the results of a Computational Fluid Dynamic (CFD) simulation of diluted gas-solid and liquid-solid flows through an S-Bend and the dynamic behavior of entrained solid particles in the flow. CFD analyses were performed at five different particle sizes ranging between 50 and 300 microns. Maximum erosive wear was observed at smaller particle sizes and compared to the larger sizes. The location of maximum erosion was at different locations in the first bend as compared to the second bend.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Mahdi Hamzehei

Gas-solid fluidized bed dryers are used in a wide range of industrial applications. With applying computational fluid dynamic (CFD) techniques, hydrodynamics of a two-dimensional nonreactive gas-solid fluidized bed dryer was investigated. A multifluid Eulerian model incorporating the kinetic theory for solid particles was applied to simulate the unsteady state behavior of this dryer and momentum exchange coefficients were calculated by using the Syamlal-O'Brien drag functions. A suitable numerical method that employed finite volume method was used to discretize the equations. Simulation results also indicated that small bubbles were produced at the bottom of the bed. These bubbles collided with each other as they moved upwards forming larger bubbles. Also, solid particles diameter and superficial gas velocity effect on hydrodynamics were studied. Simulation results were compared with the experimental data in order to validate the CFD model. Pressure drops and bed expansion ratio as well as the qualitative gas-solid flow patterns predicted by the simulations were in good agreement with experimental measurements at superficial gas velocities higher than the minimum fluidization velocity. Furthermore, this comparison showed that the model can predict hydrodynamic behavior of gas solid fluidized bed reasonably well.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Shitanshu Gohel ◽  
Shitalkumar Joshi ◽  
Mohammed Azhar ◽  
Marc Horner ◽  
Gustavo Padron

Many chemical engineering processes involve the suspension of solid particles in a liquid. In dense systems, agitation leads to the formation of a clear liquid layer above a solid cloud. Cloud height, defined as the location of the clear liquid interface, is a critical measure of process performance. In this study, solid-liquid mixing experiments were conducted and cloud height was measured as a function operating conditions and stirred tank configuration. Computational fluid dynamics simulations were then performed using an Eulerian-Granular multiphase model. The effects of hindered and unhindered drag models and turbulent dispersion force on cloud height were investigated. A comparison of the experimental and computational data showed excellent agreement over the full range of conditions tested.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1323
Author(s):  
Emanuele Fanelli

Biomass gasification is nowadays considered a viable option for clean energy production. Furthermore, still more efforts need to be spent to make this technology fully available at commercial scale. Drawbacks that greatly limit the full-time plant availability—and so its economically feasibility—mainly concerns syngas purification by contaminants such as tars. Different technological approaches were investigated over last two decades with the aim to increase both the plant availability and the overall efficiency by keeping, at the same time, CAPEX and OPEX low. Among technologies, fluidized beds are surely the most promising architectures for power production at thermal scale above 1 MWth. Gasifier can be surely considered the key component of the whole power plant and its proper design, the main engineering effort. This process involves different engineering aspects: thermo-structural, heat, and mass transfer, and chemical and fluid-dynamic concerns being the most important. In this study, with the aim to reach an optimal reaction chamber design, the hydrodynamics of a bubbling fluidized bed reactor was investigated by using a CFD approach. A Eulerian–Eulerian multiphase model, supported by experimental data, was implemented to describe the interactions between the solid and fluid phases inside the reactor while a discrete dense phase model (DDPM) model was considered to investigate momentum exchange among continuous phases and solid particles simulating char. Different process parameters, such as the bed recirculation rate and the particles circulation time inside the bed, were at least analyzed to characterize the hydrodynamics of the reactor. Results indicate that the recirculation time of bed material is in the order of 6–7 s at bench scale and, respectively, of 15–20 s at full scale. Information about solid particles inside the bed that should be used to avoid elutriation and agglomeration phenomenon, suggest that the dimension of the mother fuel particles should not exceed the value of 5–10 mm.


2021 ◽  
Vol 33 (2) ◽  
Author(s):  
Paolo Capobianchi ◽  
Marcello Lappa

AbstractSystems of solid particles in suspension driven by a time-periodic flow tend to create structures in the carrier fluid that are reminiscent of highly regular geometrical items. Within such a line of inquiry, the present study provides numerical results in support of the space experiments JEREMI (Japanese and European Research Experiment on Marangoni flow Instabilities) planned for execution onboard the International Space Station. The problem is tackled by solving the unsteady non-linear governing equations for the same conditions that will be established in space (microgravity, 5 cSt silicone oil and different aspect ratios of the liquid bridge). The results reveal that for a fixed supporting disk radius, the dynamics are deeply influenced by the height of the liquid column. In addition to its expected link with the critical threshold for the onset of instability (which makes Marangoni flow time-periodic), this geometrical parameter can have a significant impact on the emerging waveform and therefore the topology of particle structures. While for shallow liquid bridges, pulsating flows are the preferred mode of convection, for tall floating columns the dominant outcome is represented by rotating fluid-dynamic disturbance. In the former situation, particles self-organize in circular sectors bounded internally by regions of particle depletion, whereas in the latter case, particles are forced to accumulate in a spiral-like structure. The properties of some of these particle attractors have rarely been observed in earlier studies concerned with fluids characterized by smaller values of the Prandtl number.


2015 ◽  
Vol 19 (1) ◽  
pp. 317-328 ◽  
Author(s):  
Giuseppe Canneto ◽  
Cesare Freda ◽  
Giacobbe Braccio

The gas-particles flow in an interconnected bubbling fluidized cold model is simulated using a commercial CFD package by Ansys. Conservation equations of mass and momentum are solved using the Eulerian granular multiphase model. Bubbles formation and their paths are analyzed to investigate the behaviour of the bed at different gas velocities. Experimental tests, carried out by the cold model, are compared with simulation runs to study the fluidization quality and to estimate the circulation of solid particles in the bed.


2005 ◽  
Vol 498-499 ◽  
pp. 270-277 ◽  
Author(s):  
Claudio Roberto Duarte ◽  
Valéria V. Murata ◽  
Marcos A.S. Barrozo

Spouted bed systems have emerged as very efficient fluid-particle contactors and find many applications in the chemical and biochemical industry. Some important applications of spouted beds include coal combustion, biochemical reactions, drying of solids, drying of solutions and suspensions, granulation, blending, grinding, and particle coating. An extensive overview can be found in Mathur and Epstein[1]. The pattern of solid and gas flows in a spouted bed was numerically simulated using a CFD modeling technique. The Eulerian-Eulerian multifluid modeling approach was applied to predict gas-solid flow behavior. A commercially available, control-volume-based code FLUENT 6.1 was chosen to carry out the computer simulations. In order to reduce computational times and required system resources, the 2D axisymmetric segregated solver was chosen. The typical flow pattern of the spouted bed was obtained in the present calculation. The simulated velocity and voidage profiles presented a good agreement qualitative and quantitative with the experimental results obtained by He et al. [4].


Author(s):  
ONKAR L. MAHAJAN ◽  
ABHAY A. UTPAT

In deep groove ball bearings contamination of lubricant grease by solid particles is one of the main reason for early bearing failure. To deal with such problem, it is fundamental not only the use of reliable techniques concerning detection of solid contamination but also the investigation of the effects of certain contaminant characteristics on bearing performance. Nowadays the techniques such as vibration measurements are being increasingly used for on-time monitoring of machinery performance. The present work investigates the effect of lubricant contamination by solid particles on the dynamic behavior of rolling bearings, in order to determine the trends in the amounts of vibration affected by contamination in the Grease and by the bearing wear itself. Experimental tests are performed with Deep-groove ball bearings. The Dolomite powder in three concentration levels and different particle sizes was used to contaminate the grease. Vibration signals were analyzed in terms of Root Mean Square (RMS) values and also in terms of defect frequencies.


Irriga ◽  
2018 ◽  
Vol 23 (2) ◽  
pp. 194-203
Author(s):  
Acácio Perboni ◽  
José Antonio Frizzone ◽  
Rubens Duarte Coelho ◽  
Rogério Lavanholi ◽  
Ezequiel Saretta

SENSIBILIDADE DE GOTEJADORES À OBSTRUÇÃO POR PARTÍCULAS DE AREIA     ACÁCIO PERBONI1; JOSÉ ANTONIO FRIZZONE2; RUBENS DUARTE COELHO2; ROGÉRIO LAVANHOLI3 E EZEQUIEL SARETTA4   1 Professor, IFMT, Campo Novo do Parecis - MT, [email protected] 2 Professor, Departamento de Engenharia de Biossistemas, ESALQ/USP, Piracicaba - SP, [email protected]; [email protected] 3 Doutorando, Departamento de Engenharia de Biossistemas, ESALQ/USP, Piracicaba - SP, [email protected] 4 Professor, UFSM, Cachoeira do Sul - RS, [email protected]     1 RESUMO   O objetivo deste trabalho foi avaliar a influência do tamanho e concentração de partículas de areia e da velocidade de fluxo da água nas linhas na sensibilidade à obstrução de um modelo de gotejador do tipo cilíndrico, não regulado, com vazão nominal de 2 L h-1. Foram realizados ensaios de obstrução com areia misturada em água destilada, combinando os seguintes fatores: três faixas granulométricas de partículas de areia, três concentrações de areia e três velocidades de fluxo de água no tubo. A vazão de 32 gotejadores foi medida a cada doze minutos por meio de um sistema automatizado. Nos ensaios com faixa granulométrica de 0,105 a 0,25 mm, ocorreu a obstrução nas concentrações de 250 e 500 mg L-1, para os regimes de escoamento de transição e turbulento. Já na faixa granulométrica de 0,25 a 0,5 mm, ocorreu obstrução nas concentrações de 100, 250 e 500 mg L-1, para os regimes de escoamento de transição e turbulento. A obstrução de gotejadores ocorreu de forma aleatória nas oito linhas. Após obstruídos os gotejadores não desobstruíram com o passar do tempo de ensaio.   Palavras-chave: microirrigação, partículas sólidas inertes, granulometria, concentração     PERBONI, A.; FRIZZONE, J. A.; COELHO, R. D.; LAVANHOLI, R.; SARETTA, E. SENSITIVITY OF DRIPPERS TO CLOGGING CAUSED BY SAND PARTICLES     2 ABSTRACT   The purpose of this research was to assess the influence of concentration and size of sand particles, and water flow velocity in laterals on the sensitivity of drippers to clogging. A cylindrical integrated non-pressure compensating dripper of 2 L h-1 nominal flow rate was used. Experiments were undertaken using distilled water and sand particles, according to the following levels: (a) three ranges of particles sizes; (b) three concentrations of particles; and, (c) three flow velocities in the laterals. The flow rate of 32 drippers was measured at every 12 minutes by an automated system. Within the range of particle sizes from 0.105 to 0.25 mm, clogging of emitters was observed under transient and turbulent flow regimes, and under particles concentration of 250 and 500 mg L-1. Within the range of particles sizes from 0.25 to 0.5 mm, clogging was observed for all concentrations under transient and turbulent flow regimes. Clogging of emitters occurred as a random phenomenon. Once clogged, emitters did not recover their initial flow rate.    Keywords: micro irrigation, inert solid particles, particle size, concentration


Author(s):  
J. R. Kadambi ◽  
C. Shingote ◽  
R. Ke ◽  
Z. Tian ◽  
J. Furlan ◽  
...  

Hydrocyclone separators are widely used in various industrial applications in the oil and mining industries to sort, classify and separate solid particles or liquid droplets within liquid suspensions. Often, studies in the literature have investigated idealized and simplified geometries, which are also typically scaled down to very small sizes. In this study, the two phase flow system inside a transparent acyclic model with actual milling circuit cyclone hydraulics was investigated computationally and experimentally. The diameter and height of the hydrocyclone are 12.7 cm and 94 cm, respectively. In many industrial applications, a single phase flow system in a hydrocyclone is a rarity, since nearly all cyclones have an underflow which is open to atmosphere, and therefore an air core is present along the central axis. In this study, the flow field with an air core present has been investigated. The computational modelling was conducted using Star CCM+, a commercial Computational Fluid Dynamics (CFD) software package. Large Eddy Simulation (LES) and the Volume of Fluid multiphase model was used. Additionally, the computational studies also focused on the prediction of the dimensions of the air core, which were measured experimentally. The tests were conducted in the Reynolds number range of 20,000–150,000 and 9000–67,800 for the water and NaI solution respectively. The model hydrocyclone was made of optically transparent acrylic plastic with flat, smooth outer surfaces so that there were no reflections, distortions, or obstructions. Refractive index matching, to minimize refraction effects, between the test fluid and acrylic test piece was achieved using a test liquid of sodium iodide aqueous solution (63.3% NaI by weight). Images of the flow field with the air core were taken using a Canon DSLR camera. A comparison between the experimental data and the computational results were made in the r-z plane. The experimental results and the computational results will be discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document